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Abstract

This project will be split into three main sub topics. In the first,
we shall look at Ramsey’s theorem, which roughly states that if a set,
X, has enough elements and if we colour all the elements of [X]k with
r colours, for some k and r, then we have some subset Y of X such
that all the elements of [Y ]k are the same colour. We shall see two
proofs of this as well as some nice applications. Ramsey numbers are
the least possible size the set X has to be for Ramsey’s theorem to
hold and we shall look at quite a few upper and lower bounds as well
as exact values for Ramsey numbers.

The second sub topic we shall look at is Van der Waerden’s the-
orem, which is a fundamental Ramsey-type theorem. Van der Waer-
den’s theorem is concerned with the colourings of the integers and
monochromatic arithmetic progressions that arise. Van der Waer-
den’s theorem gives us another important result, Szemerédi’s theorem
which is the density version of Van der Waerden’s theorem and we
shall have a brief look at this.

Finally, the last sub topic we shall cover in this project is the
generalisation of Van der Waerden’s theorem, the Hales-Jewett theo-
rem. The Hales-Jewett theorem is about colourings of the hypercube
Cn
t = {(x1, x2, ..., xn) : xi ∈ {0, 1, ..., t− 1}} and monochromatic lines

that arise. We shall look at the celebrated proof of the Hales-Jewett
theorem by Shelah. Like Van der Waerden’s theorem the Hales-Jewett
theorem has a density version also. We shall see a proof of this which
is partly followed from the on line collaboration project called Poly-
math. In the final chapter, we shall focus on finding upper and lower
bounds for the Density Hales-Jewett numbers, cn,3 (the size of the
largest subset of Cn

3 that is line free), and in result of these bounds
we shall find the exact values of cn,3 for 0 ≤ n ≤ 6.
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1 Introduction and Ramsey’s theorem

Ramsey theory, which is named after the British Mathematician Frank Plump-
ton Ramsey, is the main topic of this project. There is no one universal
definition of Ramsey theory but informally it says that any structure will
contain a highly ordered substructure of the same type. [3]

In this chapter we shall look at Ramsey’s theorem which is about the
colourings of the set [X]k and monochromatic subsets that arise.

1.1 The Pigeonhole Principle

First we shall look at the pigeonhole principle which is of a similar flavour to
Ramsey theory and will be useful in proofs. The simple pigeonhole principle
states that if more than n pigeons roost in n holes, then at least one hole
must have more than one pigeon in it. The more generalised version of the
pigeonhole principle is given below along with a proof as shown by Landman
and Robertson [17, pp 3-4].

Lemma 1.1. (The Pigeonhole principle)
Suppose r,m ≥ 1 and n > mr. Then if a set of n elements is partitioned
into r subsets, then some subset will have at least m+1 elements.

Proof. Let X be a set such that |X| > mr and we partition X into r subsets,
Xi for i = 1, 2, ..., r. For a contradiction, assume that |Xi| ≤ m for all i.
Then |X| =

∑r
i=1 |Xi| ≤ mr, which is a contradiction and hence there must

be at least one i, such that |Xi| ≥ m+ 1.

The pigeonhole principle will be very useful in some of the proofs to
come and so we will look at a few quick examples demonstrating how the
pigeonhole principle can be used.

Example 1.2. We will look at the following exercise: ’Prove that if the
numbers 1,2,...12 are randomly positioned around a circle, then some set of
three consecutively positioned numbers must have a sum of at least 19.’ [17,
p. 17]

There are 12 different sets of three consecutively positioned numbers
around the circle, and each number appears in three of these sets. If Ai
is the sum of the three consecutive numbers starting from the ith position on
the circle then,

∑12
i=1Ai = 3

∑12
i=1 i = 234. Now 234 > 19× 12 = 228, so one

of the Ai must be at least 19 by the pigeonhole principle.

Example 1.3. Our second example is: ’An organiser of a party, restricted
to those aged between 18 and 30 (inclusive), wanted to ensure that at least
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three were born in the same year. How many people must be invited to be
sure this condition is fulfilled?’ [1, p. 296]

There will be 14 years people aged inclusively between 18 and 30 could
be born. So here r = 14 and as we want to make sure we have at least 3
people born in one of the 14 years we have, m + 1 = 3 so m = 2. Now,
29 > 2× 14 = 28 so we need 29 people to ensure that three of them are born
in the same year.

1.2 Ramsey’s theorem

Another example that makes use of the Pigeonhole principle is the party
problem. The party problem is the most common starting point of Ramsey’s
theorem.

Lemma 1.4. (The party problem)
If six people are at a dinner party then either three of them are mutual friends
or three of them are mutual strangers. [10, p 1]

The proof of this uses the pigeonhole principle discussed before and is
rather straightforward.

Proof. If we fix a person out of the six, call them i, and let X be the set of
i’s friends and Y be the set of the people i has never met. By the pigeonhole
principle either |X| ≥ 3 or |Y | ≥ 3. Let’s assume that |X| ≥ 3 and if two
of the people in X are also friends then we have three mutual friends. If no
pair in X know each other then all the people in X are mutual strangers
and hence we have three people who are mutual strangers. There is a similar
argument if |Y | ≥ 3.

Note that here, in order to guarantee that you have three mutual friends
or three mutual strangers, you must have at least six people. We can see this
by looking at the case with five people and finding an example where there is
neither three mutual friends or three mutual strangers. So for example, if we
call the five people 1,2,3,4 and 5, then say 1 knows 2, 2 knows 3, 3 knows 4, 4
knows 5 and 5 knows 1 and all the other combinations of people do not know
each other. Then there is no three mutual friends or three mutual strangers.
[3, p 149]

We can look at other problems similar to the party problem. For example,
if we had 17 people at a funeral and two people can either be total strangers,
related or friends (if two people are related they are not classed as friends).
Then can we guarantee we will have either three people who are strangers,
three people who are related or three people who are friends? We shall come
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back to this problem later. Now, generalising these sort of problems gives
us Ramsey’s theorem. However, we will first introduce some notation which
will be useful before stating Ramsey’s theorem.

1.2.1 Notation

Firstly, let X be a set then we shall write,

[X]k = {Y : Y ⊂ X, |Y | = k}

For the set {1, 2, ...n} we shall write [n], and if X = [n] we shall simply write
[n]k = {Y : Y ⊂ {1, 2, ...n}, |Y | = k}.

1.2.2 Finite Ramsey’s theorem

Theorem 1.5. (Ramsey’s Theorem)
Let r, k and m be positive integers. Then there exists an N such that: if a
set, X, has at least N elements and all elements of [X]k are coloured with r
colours then there exists an m-element subset, Y, such that all elements of
[Y ]k are the same colour (i.e. they are monochromatic).
Or more generally, let r, k, a1, a2, ..., ar be positive integers then there exists
an N such that: if X is a set of at least N elements and all elements of [X]k

are coloured with r colours, c1, ...cr. Then there exists an ai-element subset
of X where all of its k-element subsets have colour ci. [3, p 150]

In order to prove Ramsey’s theorem we will need to use the idea of Ramsey
numbers which is defined below.

Definition 1.6. Rk(a1, a2, ..., ar) is the least N for which Ramsey’s theorem
holds. Rk(a1, a2, ..., ar) is called a Ramsey number and if k = 2 we will just
write R(a1, a2, ..., ar).

We shall look at a few examples demonstrating Ramsey numbers in order
to ensure the notation is clear.

Example 1.7. The party problem relates to the Ramsey number R(3, 3)
and so we know that R(3, 3) = 6.

Example 1.8. Earlier we brought up the question: if we had 17 people at a
funeral and two people can either be total strangers, related or friends (if two
people are related they are not classed as friends). Then can we guarantee we
will have either three people who are strangers, three people who are related
or three people who are friends? This problem relates to the Ramsey number
R(3, 3, 3) and the answer to our question is yes.
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If we pick a person, call them A, and then let X be the set of people
who A does not know at the funeral, Y the set of A’s relatives at the funeral
and let Z be the set of A’s friends at the funeral. Then by the pigeonhole
principle one of X, Y or Z must have at least 6 people in it. If |Y | ≥ 6, then
we have two possibilities:
1) One or more of the people in Y are relatives.
2) Everybody in Y are either friends or strangers.

If 1) is true then we have three people who are relatives as required. If
2) is true then by the party problem we have either three people who are
strangers or three people who are friends. We can apply the same to X and
Z. So in terms of Ramsey numbers we know R(3, 3, 3) ≤ 17.

In chapter 2 we will look more into Ramsey numbers, by looking at the
known Ramsey numbers and bounds on Ramsey numbers. Now for the proof
of Ramsey’s theorem we will follow Cameron’s [3, p 151] proof, elaborating
on the details.

Proof. (Ramsey’s theorem)
Firstly, for k = 1, we can use the pigeonhole principle to find R1(a1, a2, ..., ar)
to be,

R1(a1, a2, ..., ar) =
r∑
i=1

ai − r + 1

so now we know the theorem holds for k = 1, we shall assume k > 1. We
shall use induction on the

∑r
i=1 ai. It is trivial that for any i, if ai = k then

the Ramsey number Rk(a1, ..., ar) = k.
By the induction hypothesis we know that the following are defined for

i = 1, ..., r
Ai = Rk(a1, ..., ai−1, ai − 1, ai+1, ..., ar)

Let n = 1+Rk−1(A1, ..., Ar), then we shall aim to show thatRk(a1, a2, ..., ar) ≤
n. Let X be a set of n elements and we shall colour [X]k with the r colours,
c1, ..., cr. Let’s pick an element of X, x ∈ X and let Y be the set Y = X\{x}.
Now, colour [Y ]k−1 with the colours c∗1, ...c

∗
r according to the following rule:

the subset V is colour c∗i if and only if in the colouring of X, V ∪ {x} is
colour ci. Rearranging n we get n − 1 = Rk−1(A1, ..., Ar), and so there is a
subset of size Ai, let’s call it Zi, of Y which is c∗-monochromatic. Then by
the definition of Ai, Zi has either:
1) A set of size aj where all the k-element subsets are coloured cj for j 6= i.
2) Or a set, Q , of size ai− 1 where all the k-element subsets are coloured ci.

In case 1) we have what we desire. In case 2) we have |Q∪{x}| = ai and
all the k-element subsets of |Q∪{x}| are coloured ci as any k-element subset
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that does not contain x is coloured ci by 2) and those k-element subsets that
contain x are also coloured ci by the definition of the c∗-colouring.

Ramsey’s theorem has a lot of beautiful applications which include ap-
plications in number theory, logic, set theory, theoretical computer science,
Geometry and others [22]. We will focus on a very nice geometrical applica-
tion which we shall follow from Krishnamurphy [16, p 457], elaborating on
his details and providing some examples to demonstrate the proofs.

Theorem 1.9. Let m ≥ 3 be an integer. Then there exists a positive integer
Nm such that:
If n ≥ Nm and we choose n points in the plane such that no three points are
collinear (lie on a straight line), then m of these n points are the vertices of
a convex (all interior angles are less than 180◦) m-gon.

For the proof of this we need two lemmas.

Lemma 1.10. If we choose five points in a plane such that no three are
collinear, then four of the five points are the vertices of a convex quadrilateral.

Proof. If we place five points in a plane and join each pair with an edge, so
we have ten edges. Then the outer perimeter is a convex polygon. We have
three cases here:
1) The outer perimeter is a pentagon.
2) The outer perimeter is a quadrilateral.
3) The outer perimeter is a triangle.

If 1) is true, if we take any four of the vertices we can get a convex
quadrilateral. For example in the convex pentagon below by using the red
line between 1 and 4 we get a convex quadrilateral.

1

2 3

4

5

If 2) is true we have what we want.
If 3) is true then we must have two points inside the triangle. We therefore

have a convex quadrilateral with the two points inside the triangle and the
two vertices of the triangle that are on the same side as the two points on the
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inside. For example if we have the following outer perimeter and two inside
points, then the lines in red plus the line between 2 and 3 gives us a convex
quadrilateral.

1

2 3

4
5

Lemma 1.11. If we have m points in a plane such that no three points are
collinear and if all the quadrilaterals that are formed by the m points are
convex then the m points form the vertices of a convex m-gon.

Proof. The m points give
(
m
2

)
edges. The outer perimeter is again a convex

polygon. Lets say the outer perimeter is formed by p of the points and p < m.
Call the points that form the vertices of the outer perimeter v1, v2, v3, ..., vp
in that order. Now any of the points that lie inside the outer perimeter must
lie inside one of the triangles v1v2v3, v1v3v4, ..., v1vp−1vp.

For example if p = 6, then the diagram below demonstrates the triangles
in which any inner point must lie.

v1

v2

v3
v4

v5

v6

Let s be a point inside the outer perimeter but then the quadrilateral
v1visvi+1 has an angle greater than 180◦ (angle visvi+1).

For example, carrying on from our previous example if v7 is an interior
point then the we can form a quadrilateral which is concave, which is shown
in blue in the following digram.
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v1

v2

v3
v4

v5

v6

v7

This contradicts the hypothesis that all quadrilaterals that are formed
from the m points are convex and so we must have p = m and so we have a
convex m-gon.

Now using Ramsey’s theorem, lemma 1.10 and lemma 1.11 we can give
the proof for theorem 1.9.

Proof. (Theorem 1.9.)
It is obvious that N3 = 3 as triangles are convex so any three points will
form a convex triangle as long as we have at least three points in the plane.

Let m ≥ 4 and let n ≥ R4(5,m). If we have n points in the plane and we
partition the four-element subsets of the n points into concave and convex
quadrilaterals then by Ramsey’s theorem we either have:
1) A set of five points with all quadrilaterals concave.
2) Or a set of m points with all quadrilaterals convex.

By lemma 1.10 1) cannot be true. So 2) must be true and by lemma 1.11
we have a convex m-gon.

1.2.3 Infinite Ramsey’s theorem

We will look at the infinite version of the Pigeonhole principle which is stated
by Cameron [3, p 312] but we shall give our own proof to the principle. The
principle says, if infinitely many pigeons roost in a finite number of holes then
some hole must contain infinite pigeons. Below is a more formal definition
of the infinite Pigeonhole principle.

Lemma 1.12. (The infinite Pigeonhole Principle)
If infinite many items are divided into a finite number of classes, then some
class has an infinite number of items.

Proof. Let X be an infinite set of items, then partition X into r classes where
r is finite. Then let X = X1tX2t ...tXr be the partition. If all Xi are finite
then X would also be finite, so there must be an i, where Xi is infinite.
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The Infinite Ramsey’s theorem is a generalisation of the infinite Pigeon-
hole principle. Cameron [3, p 316] states the theorem and proves it for the
k = 2 case, we shall prove it for general k.

Theorem 1.13. (Infinite form of Ramsey’s theorem)
Let r and k be positive integers and let X be an infinite set. Colour the
elements of [X]k with r colours. Then there is an infinite subset Y of X such
that all the elements of [Y ]k are the same colour.

Proof. We shall prove this theorem by induction on k. The k = 1 case is the
infinite form of the Pigeonhole principle which we have just proved. So we
shall assume the theorem holds for k − 1 and we shall show it holds for k.

Suppose X is countable, say X = {x1, x2, ...}. Then let y1, y2, ... be
a subsequence of distinct elements. Finally let Y0, Y1, ... be a sequence of
distinct elements such that:
1) Y1 ⊆ Y2 ⊆ ...
2) yi 6∈ Yi and all {yi} ∪ z have the same colour, where z are the (k − 1)
element subsets of Yi.
3) For all j > i we have yj ∈ Yi.

We shall construct the Yi as follows:
Let Y0 = X. Then to construct Yi, choose a yi ∈ Yi−1 then there are infinite
many {yi}∪z coloured with r colours, where z are the (k−1) element subsets
of Yi\{yi}. By the induction hypothesis there exists an infinite subset Yi of
Yi−1\{yi} where all the (k − 1) element subsets are the same colour and so
2) holds.

So now the colour of a k-element subset only depends on the yi with
the smallest i, call this colour ci. As we have a finite number of colours,
by the Pigeonhole principle there exists an infinite subset M of the natural
numbers such that ci = cj if i and j are both in M . So the set {yi : i ∈ M}
is a monochromatic subset of X.

We can deduce another proof for the finite version of Ramsey’s theorem
from the infinite form using König’s infinity lemma. König’s infinity lemma
is a theorem about infinite graphs so it makes sense to define a graph and
some properties of graphs before stating and proving it.

Definition 1.14. A graph is a pair G = (V,E), where V is a finite set of
points called vertices and E is a set of edges where each edge is associated
with two vertices in V (endpoints). A directed graph is a graph G where the
edges have a direction associated with them.

We note that in this project we shall only refer to simple graphs, which are
graphs with no loops (no edge with both endpoint the same) or no multiple
edges (no two edges have the same set of endpoints).
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Definition 1.15. Let G = (V,E) be a graph, then the degree of vertex
v ∈ V , denoted d(v), is the number of incident edges.

Definition 1.16. A path is a sequence of edges that connect a sequence of
vertices. All edges and vertices in the sequences (except maybe the first and
last vertex) are distinct. A graph is connected if for every pair of vertices u
and v there is a path from u to v (a path that starts at vertex u and ends at
vertex v).

Definition 1.17. A subgraph of G = (V,E) is a graph G′ = (V ′, E ′) where
V ′ ⊆ V and E ′ ⊆ E.

Definition 1.18. A graph G is complete if every pair of vertices in G are
connected by an edge. A complete graph on n vertices is denoted as Kn.

We shall give an example to demonstrate these graph theory definitions.

Example 1.19. Below is an example of a graph G = (V,E), where V =
{1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (3, 4), (4, 5), (1, 5), (2, 4)} (here (u, v),
where u, v ∈ V , means that the vertices u and v are connected by an edge in
the graph).

1

2 3

4

5

The five vertices in the above graph have the following degrees; d(1) = 2,
d(2) = 3, d(3) = 2, d(4) = 3, d(5) = 2. An example of a path in this graph
is shown below in red,

1

2 3

4

5
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The path begins at vertex 1 then goes to 2, then 4 and then 5. This graph
is connected as there is a path between vertices u and v for all u, v ∈ V .

Below is an example of a subgraph of this graph.

1

2 3

5

Finally this graph is not complete as there is not an edge between every
pair of vertices for example there is no edge between 1 and 4.

Below is König’s infinity lemma and proof which we follow from Wilson’s
[27, p 78] proof.

Theorem 1.20. (König’s infinity lemma)
Let G = (V,E) be a connected infinite graph (infinite number of vertices),
where all vertices have finite degree. Then, for any v ∈ V there exists a
one-way infinite path starting at v.

Proof. For every vertex, z ∈ V \{v} there is a path from v to z as the graph
is connected. There are infinitely many paths in G that start at v and as v
has only finitely many neighbours, there exists a v1 ∈ V such that infinitely
many of the paths start v → v1 → .... We can keep on repeating this
process for vi infinitely many times and so we have the one way infinite path
v → v1 → v2 → ....

We shall discuss a quick example showing König’s infinity lemma in ac-
tion. This example was proposed by König [14] and we shall give a proof.

Example 1.21. Claim: If we assume that humans will never become extinct
then we have an infinite line of males.
Proof: Let H1 be the set of all the males that are alive today and let H2 be
the set of all the sons of the males in H1, let H3 be the set of all the male sons
of the men in H2, ..., let Hi be the set of all the male children of the men in
the set Hi−1. Then as humans can only have a finite number of children and
as we have assumed that humans will not become extinct, we know that all
Hi are finite and non zero. Now if we create a graph where the vertices are
all the males from the sets Hi, and there is an edge from v ∈ Hi to u ∈ Hi+1
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if and only if u is the son of v. So in our graph we have an infinite number
of vertices (as humans will not become extinct) and each vertex has a finite
degree. These are the conditions for us to use König’s infinity lemma, so we
have an infinite path m1,m2,m3, ... where mi ∈ Hi and mi+1 is the son of
mi. So this infinite path is our infinite male line.

We can now deduce a second proof for the finite Ramsey’s theory from
the infinite version along with use from König’s infinity lemma. Below is the
proof which expands on Cameron’s [3, p 316] outline of the proof.

Proof. (Finite Ramsey’s theorem)
We shall assume that the theorem does not hold for some r, k and m. So
for all positive n there exists an r-colouring of [X]k where X = {1, 2, ...n}
such that there is no m-monochromatic set, we shall call these colourings bad
colourings. Let Vn be the set of bad colourings of [X]k where X = {1, ..., n}.
Now form a directed graph where the vertex set is V = V0∪V1∪ ... and define
the edges as follows: There is an edge going from vn ∈ Vn to vn+1 ∈ Vn+1 if
and only if vn is the exact same colouring as vn+1, with the k-element subsets
with n+1 in being ignored (vn is the restriction of the colouring vn+1). There
are

(
n
k−1

)
k-element subsets of an n+ 1-element set that contain the element

n + 1 and so there are r(
n
k−1) different ways to colour these subsets with r

colours. Therefore, for a vertex vn ∈ Vn , it is the restriction of at most r(
n
k−1)

colourings and so the vertex vn has finite degree. We can now apply König’s
infinity lemma. So by the lemma there is a one way infinite path vo, v1, v2, ...
that tells us how to colour the k-element subsets of the natural numbers such
that there is no monochromatic m-set but then this contradicts the infinite
version of Ramsey’s theorem.
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2 Ramsey numbers

In chapter 1 we saw that the Ramsey number Rk(a1, a2, ...ar) is the least
possible N for which Ramsey’s theorem holds. For the k = 2 case we write
R(a1, ...ar). Only a handful of the exact values for Ramsey numbers are
known and these are mainly for the k = r = 2 case. The best we can do for
the other numbers is to try and find upper and lower bounds for them. In
this chapter we will look at the exact Ramsey numbers and bounds for the
k = r = 2 case and then move onto looking briefly at cases where r > 2.

2.1 Values and bounds for R(a1, a2)

We will now think of R(a1, a2) to be the least possible N such that when
a complete graph with at least N vertices has its edges coloured with two
colours it either has a monochromatic complete subgraph on a1 vertices or a
monochromatic complete subgraph on a2 vertices.

2.1.1 Upper bounds for R(a1, a2)

We will start by looking at some upper bounds for R(a1, a2). First we will
look at a few trivial bounds [1, p 306].

Lemma 2.1.
1) R(a1, a2) = R(a2, a1)
2) R(a1, 1) = 1 = R(1, a2)
3) R(a1, 2) = a1 and R(2, a2) = a2

Proof. 1) If R(a1, a2) = n then for all complete graphs on at least n vertices,
for all colourings of the edges with red and blue there is either a red Ka1 or a
blue Ka2 . If we take the complement of any of these colourings, so any edge
that is red is now blue and vice versa, then we will have either a blue Ka1 or
a red Ka2 and hence R(a1, a2) = R(a2, a1).
2) This is trivial as a subgraph on one vertex has no edges, hence it is
monochromatic.
3) We shall first prove that R(a1, 2) ≤ a1. If we have a complete graph on a1
vertices and colour its edges red and blue. If all the edges are red then we
have a red Ka1 if not we have at least one blue edge and so we have a blue
K2. Hence R(a1, 2) ≤ a1.

Now we will prove that R(a1, 2) > a1− 1. If we colour the edges of Ka1−1
with all red edges then we have no red Ka1 or blue K2. Hence R(a1, 2) = a1
and by 1) R(2, a2) = a2.

15



In chapter 1, the first proof of the finite Ramsey’s theorem gives us the
following inequality for Ramsey numbers.

Rk(a1, ..., ar) ≤ 1 +Rk−1(A1, ..., Ar) (1)

where
Ai = Rk(a1, ...ai−1, ai − 1, ai+1, ...ar)

and from this we can derive the following result.

Theorem 2.2. For all a1, a2 ≥ 2 we have,

R(a1, a2) ≤ R(a1, a2 − 1) +R(a1 − 1, a2)

Proof. From the proof of Theorem 1.5. we know that Rk(a1, ..., ar) ≤ 1 +
Rk−1(A1, ..., Ar) and so for the k = r = 2 case we have,

R(a1, a2) ≤ 1 +R1(A1, A2)

where
A1 = R(a1 − 1, a2)

A2 = R(a1, a2 − 1)

By the pigeonhole principle we have R1(A1, A2) = A1 + A2 − 1 and so we
have R(a1, a2) ≤ R(a1, a2 − 1) +R(a1 − 1, a2).

We can look at a special case for this theorem, which we expand on
Graham’s explanations [10, p 89].

Theorem 2.3. If both R(a1, a2− 1) and R(a1− 1, a2) are even then we have
a strict inequality,

R(a1, a2) < R(a1, a2 − 1) +R(a1 − 1, a2)

Proof. We shall show that a complete graph, G = (V,E), on n = R(a1, a2 −
1) + R(a1 − 1, a2) − 1 vertices, that has its edges coloured with red and
blue either has a red complete subgraph on a1 vertices or a blue complete
subgraph on a2 vertices.

We shall assume that there are no such subgraphs. Let x ∈ V , then x
is connected to n− 1 other vertices by R(a1 − 1, a2)− 1 red edges (to avoid
having a blue subgraph on a2 vertices) and by R(a1, a2 − 1) − 1 blue edges
(again to avoid having a red subgraph on a1 vertices). So our total number

of red edges is (R(a1−1,a2)−1)n
2

and similarly the total number of blue edges is
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(R(a1,a2−1)−1)n
2

. As the total number of red and blue edges have to be integers
we will need both R(a1, a2−1) and R(a1−1, a2) to be odd. So in order for us
to have a red complete subgraph on a1 vertices or a blue complete subgraph
on a2 vertices we must have both R(a1, a2 − 1) and R(a1 − 1, a2) even.

For example we have R(3, 4) ≤ R(3, 3) + R(2, 4), and we already saw
in chapter 1 that R(3, 3) = 6 and from lemma 2.1 we know R(2, 4) = 4 so
both R(3, 3) and R(2, 4) are even and therefore R(3, 4) ≤ 9. To show that
R(3, 4) = 9 we must find an example of a red and blue colouring of K8 that
has no red K3 or blue K4. If you colour the edges of K8 as shown in graph
H,

H =

then we can clearly not get a red K3 or a blue K4. So this proves that
R(3, 4) = 9.

Now as we know R(3, 4) = 9 by theorem 2.2 we know R(4, 4) ≤ R(3, 4) +
R(3, 4) = 18 and in fact we know R(4, 4) = 18. We can see this by defining
a two colouring of the complete graph on 17 vertices and showing it has no
monochromatic subgraph on four vertices. In the graph K17, if we colour the
edge from vertex i to: i + 1 (mod 17), i + 2 (mod 17), i + 4 (mod 17),
i + 8 (mod 17) red and the rest blue as shown in graph J (only the red
edges are shown in the graph to avoid a very complicated graph) then we
can show we have no red K4. By symmetry of the graph if we can show that
vertex 0 is in no red K4 then we have no red K4 in the colouring. Vertex 0 is
adjacent to 1, 2, 4, 8, 9, 13, 15 and 16. Vertices 0 and 1 cannot be in a red
K4 as 1 is adjacent to 2, 9 and 16 that are also adjacent to 0. But then none
of 2, 9 and 16 are adjacent so we have no red K4 including 0 and 1. We can
do similar arguments for 0 and 2, 0 and 4 etc. to show there is no red K4.
We have no blue K4 by a similar argument. Therefore R(4, 4) = 18.
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J =

0
1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

These Ramsey numbers grow extremely quickly as a1 and a2 increase
and it is therefore very difficult to find their exact values. This point was
demonstrated by Paul Erdős’ famous quote:

”If aliens offered earthlings the choice of (i) determine R(5, 5) within one
year or (ii) face intergalactic war, then we should make strenuous efforts to
find R(5, 5). If the condition (i) were altered to that of finding R(6, 6) we

should immediately prepare for war!” [1, p 311]

Summing up, we have already seen that R(3, 3) = 6, R(3, 4) = 9 and
R(4, 4) = 18. Six other non trivial exact Ramsey numbers have been found
by people in the past, table 1 shows these values along with some upper
bounds (the upper bounds in the table are in brackets).

Another famous upper bound due to Erdős and Szekeres that we can get
from the recursion relation (1) is shown in the following theorem.

Theorem 2.4. For positive a1 and a2,

R(a1, a2) ≤
(
a1 + a2 − 2

a1 − 1

)
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a2
a1 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11
3 6 9 14 18 23 28 36 (43) (51)
4 18 25 (41) (61) (84) (115) (149) (191)
5 (49) (87) (143) (216) (316) (442)
6 (165) (298) (495) (780) (1171)
7 (540) (1031) (1713) (2826) (4553)
8 (1870) (3583) (6090) (10630)
9 (6588) (12677) (22325)
10 (23556)

Table 1: Exact values and some upper bounds (shown in brackets) for the
Ramsey numbers R(a1, a2)
[23, p 4858]

Proof. To prove this we can either use Theorem 2.2 or equation (1). We will
prove it using (1) as done by Cameron [3, p 152]. We will use induction on
a1 and then on a2. For the base case we will look at the cases where a1 = 2
and a2 = 2. Using lemma 2.1 we get,

R(2, a2) = a2 =

(
2 + a2 − 2

2− 1

)
R(a1, 2) = a1 =

(
a1 + 2− 2

2− 1

)
and so the theorem is true for a1 = a2 = 2. Then by the induction hypothesis
and equation (1) we have,

A1 = R(a1 − 1, a2) ≤
(
a1 − 1 + a2 − 2

a1 − 1− 1

)
=

(
a1 + a2 − 3

a1 − 2

)
A2 = R(a1, a2 − 1) ≤

(
a1 + a2 − 1− 2

a1 − 1

)
=

(
a1 + a2 − 3

a1 − 1

)
So by (1) we know R(a1, a2) ≤ 1+R1(A1, A2) and by the pigeonhole principle
R1(A1, A2) = A1 + A2 − 1 as A1 + A2 − 1 ≥ A1 − 1 + A2 − 1. So,

R(a1, a2) ≤ 1 +R1(A1, A2) = A1 + A2

≤
(
a1 + a2 − 3

a1 − 2

)
+

(
a1 + a2 − 3

a1 − 1

)
=

(
a1 + a2 − 2

a1 − 1

)
The last step here used that

(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
.
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Not much progress was made in improving this bound until the 1980s,
where in 1987 Graham and Rödl improved upon the result and then in 1988
Thomason improved upon it further by his result in ’An upper bound for
some Ramsey numbers’ [25]. To date Conlon’s upper bound

R(k + 1, k + 1) ≤ k−C
logk

loglogk

(
2k

k

)
where C is some constant, is the best upper bound for diagonal Ramsey
numbers. This was proved in the article ’A new upper bound for diagonal
Ramsey numbers’ published in 2009 [4].

In 2012, Samana [23] made the following improvement on theorem 2.4
which is not as strong as the above but the proof of this is rather nice.

Theorem 2.5. For a1 ≥ 5 and a2 ≥ 5, we have,

R(a1, a2) ≤
(
a1 + a2 − 2

a1 − 1

)
−
(
a1 + a2 − 4

a1 − 2

)
Proof. Firstly Samana proved that for a2 ≥ 7 we have

R(4, a2) ≤
a2

3 + 5a2
6

=

(
a2 + 2

3

)
−
(
a2
2

)
=

(
4 + a2 − 2

4− 1

)
−
(

4 + a2 − 4

4− 2

)
and for a2 ≥ 6 we have

R(5, a2) ≤
a2

4 + 2a2
3 + 11a2

2 + 10a2
2

4 =

(
a2 + 3

4

)
−
(
a2 + 1

3

)

=

(
5 + a2 − 2

5− 1

)
−
(

5 + a2 − 4

5− 2

)
These were proved using theorem 2.2 and R(3, a2) ≤

(
a2
2

)
− c for some

non-negative integer c along with induction on a2. We will however not go
in to detail on this proof as they are rather straightforward.

We will now prove the main result using these two results. We shall use
proof by induction on k = a1 + a2. For the base case let k = 10, then if
a1 = a2 = 5 we get

(
5+5−2
5−1

)
−
(
5+5−4
5−2

)
= 50. From table 1 we know that

R(5, 5) ≤ 49 < 50. So we know it holds for a1 = a2 = 5. Similarly for
a1 = 4 and a2 = 6 we have

(
4+6−2
4−1

)
−
(
4+6−4
4−2

)
= 41 and from table 1 we know

R(4, 6) ≤ 41.
We will now assume that k > 10 and that the theorem holds for k−1. By

the induction hypothesis, the two above inequalities we quoted and theorem
2.2 we have,

R(a1, a2) ≤ R(a1 − 1, a2) +R(a1, a2 − 1)
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≤
(
a1 + a2 − 3

a1 − 2

)
−
(
a1 + a2 − 5

a1 − 3

)
+

(
a1 + a2 − 3

a1 − 1

)
−
(
a1 + a2 − 5

a1 − 2

)
=

(
a1 + a2 − 2

a1 − 1

)
−
(
a1 + a2 − 4

a1 − 2

)

For example table 2 compares the upper bound from theorem 2.4 and the
upper bound from theorem 2.5 for R(6, t), for different values of t.

R(6,6) R(6,7) R(6,8) R(6,9) R(6,10) R(6,11)
Theorem 2.4 252 462 792 1287 2002 3003
Theorem 2.5 182 336 582 957 1507 2288

Table 2: Upper bounds for R(6, t) found from theorems 2.4. and 2.5.

You can see that theorem 2.5. improves upon theorem 2.4. quite effi-
ciently.

2.1.2 Lower bounds for R(a1, a2)

One way to find lower bounds for the Ramsey number R(a1, a2) is by search-
ing graphs for monochromatic Ka1 and Ka2 subgraphs. This is very time
consuming for even the smaller Ramsey numbers so we will look at some of
the known lower bounds.

We will start by looking at some lower bounds for the diagonal Ramsey
number R(a1, a1), where the proofs use a probabilistic method (we shall
write R(a1, a1) as R(a1) from now on). We will use the theorems and proofs
given by Graham [10], Cameron [16] and Allenby [1] expanding on their
explanations. We will start with the following theorem which we can then use
to find some lower bounds for R(a1). For this part we expand on Graham’s
[10, p 92] explanations.

Lemma 2.6. If, (
n

a1

)
21−(a12 ) < 1

then R(a1) > n

21



Proof. We want to prove that if
(
n
a1

)
21−(a12 ) < 1 then there exists a 2-colouring

of Kn such that there is no monochromatic Ka1 subgraph. Now here is where
we use the probabilistic method. We consider a random colouring of Kn with
the colours red and blue such that an edge is coloured red with probability
1
2

and an edge is coloured blue with probability 1
2

(the edges are coloured

independently). As there are
(
n
2

)
edges in Kn, there are 2(n2) different possible

colourings and each of these colourings occur with probability 1

2(
n
2)

.

If we colour Ka1 with red and blue according to the probabilities as above,

the probability all edges are coloured red is 2−(a12 ) and similarly the prob-

ability all edges are coloured blue is 2−(a12 ). So the overall probability that

Ka1 is monochromatic is 21−(a12 ). There are
(
n
a1

)
different Ka1 subgraphs of

Kn, so the probability that there is a monochromatic Ka1 subgraph of Kn is(
n

a1

)
21−(a12 )

If there was a monochromatic Ka1 colouring then we would have
(
n
a1

)
21−(a12 ) =

1 and so if
(
n
a1

)
21−(a12 ) < 1 then R(a1) > n.

Our aim is now to find an n such that this inequality holds, in the next
theorem we find such an n as given by Cameron [16, p 153] but we shall
elaborate on the details in the proof Cameron gives.

Theorem 2.7. For all a1 > 2,

R(a1) ≥ 2
a1−2

2

Proof. We have,

1−
(
a1
2

)
= 1− a1(a1 − 1)

2
= 1− a1

2

2
+
a1
2
< −a1

2

2
+ a1 = −a1(a1 − 2)

2

as a1 > 2.
We also know,(

n

a1

)
=

n!

(n− a1)!a1!
=
n(n− 1)...(n− a1 + 1)

a1!
<
na1

a1!
< na1

therefore using lemma 2.6,(
n

a1

)
21−(a12 ) < na12−

a1(a1−2)
2

22



if we let n equal the integer part of 2
a1−2

2 then we have,(
n

a1

)
21−(a12 ) < na12−

a1(a1−2)
2 ≤ 1

So there exists a two colouring of Kn such that there is no monochromatic
Ka1 subgraph.

We can improve upon this result for n by the following theorem, which
we expand on Allenby’s [1, pp 312-313] proof.

Theorem 2.8. For all a1 ≥ 2,

R(a1) >
a1(
√

2)a1−1

e

Proof. First we will show that(
n

a1

)
<

1

2
(
n

a1
)a1ea1

We saw in the previous proof that(
n

a1

)
=

n!

(n− a1)!a1!
=
n(n− 1)...(n− a1 + 1)

a1!
<
na1

a1!

so we have, (
n

a1

)
<
na1

a1!
= (

n

a1
)a1
a1
a1

a1!

now,

ea1 = 1 + a1 +
a21
2

+
a31
3

+ ... >
aa1−11

(a1 − 1)!
+
aa11
a1!

=
a1.a

a1−1
1

a1.(a1 − 1)!
+
aa11
a1!

=
2aa11
a1!

thus,
aa11
a1!

<
1

2
ea1

and so we have, (
n

a1

)
<

1

2
(
n

a1
)a1ea1

We can now use this inequality as follows,(
n

a1

)
21−(a12 ) < 21−(a12 ) 1

2
(
n

a1
)a1ea1
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and if we substitute n = a1(
√
2)a1−1

e
into the previous inequality we get,

21−(a12 ) 1

2
(
a1(
√

2)a1−1

e
)a1(

e

a1
)a1 = 21−(a12 )2−12

a1(a1−1)
2 = 1

so if n = a1(
√
2)a1−1

e
then

(
n
a1

)
21−(a12 ) < 1 and hence R(a1) >

a1(
√
2)a1−1

e
.

So far we have only seen lower bounds for the diagonal Ramsey num-
bers. We will start by giving a rather weak but satisfying lower bound for
the Ramsey number R(a1, a2). We shall follow Allenby’s [1, p 307] proof,
expanding on details.

Theorem 2.9. For all a1, a2 ≥ 2 we have,

R(a1, a2) > (a1 − 1)(a2 − 1)

Proof. When a1 = 2 we have R(2, a2) = a2 > a2 − 1 = (2 − 1)(a2 − 1) and
similarly for a2 = 2. So we shall assume a1, a2 > 2. Our aim is to show that
there is a red and blue colouring of the complete graph on (a1 − 1)(a2 − 1)
vertices without a red Ka1 or a blue Ka2 . We can describe such a colouring
as follows, if we arrange the (a1 − 1)(a2 − 1) vertices in a grid with a1 − 1
many rows and a2 − 1 many columns. We then colour the edges according
to the following rules:
1) Colour an edge blue if the two endpoints of the edge are in the same row.
2) Colour an edge red if the two endpoints of the edge are in the same column.

Then if we pick a1 vertices at least two must lie in the same row as we only
have a1−1 columns and therefore there is a blue edge so we do not have a red
Ka1 . Similarly, if we pick a2 vertices at least two of these must lie in the same
column and hence we have no blue Ka2 and so R(a1, a2) > (a1 − 1)(a2 − 1).

2.2 Multicolour Ramsey Numbers

There are also bounds out there for Ramsey numbers with more colours and
with larger k. We shall however not delve too deep into this and we will just
give one basic upper bound for the multicolour case with k = 2, that comes
from the proof of Ramsey’s theorem.

Theorem 2.10. For r ≥ 2 we have,

R(a1, a2, ..., ar) ≤ 2− r +R(a1 − 1, a2, ..., ar) +R(a1, a2 − 1, a3, ..., ar)

+...+R(a1, a2, ..., ar−1, ar − 1)
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Proof. Using inequality (1), which came from the proof of Ramsey’s theorem,
we have

R(a1, a2, ..., ar) ≤ 1 +R1(A1, A2, ..., Ar)

where Ai = R1(a1, ..., ai−1, ai − 1, ai+1, ...ar).
By the pigeonhole principle,

R1(A1, A2, ..., Ar) =
r∑
i=1

(Ai − 1) + 1

hence we get our result,

R(a1, a2, ..., ar) ≤ 2− r +R(a1 − 1, a2, ..., ar) +R(a1, a2 − 1, a3, ..., ar)

+...+R(a1, a2, ..., ar−1, ar − 1)

The only known exact Ramsey number with more than two colours is
R(3, 3, 3) = 17. The most intriguing and studied open case is R(3, 3, 3, 3) (4
colours) we know that 51 ≤ R(3, 3, 3, 3) ≤ 62. The lower bound of 51 was
found by Fan Rong K. Chung in 1973 with the following lower bound:

R(3, ..., 3; r) ≥ 3R(3, ..., 3; r − 1) +R(3, ..., 3; r − 3)− 3

where R(3, ..., 3; r) means there are r 3’s in the brackets (r colours). [21,
pp 37-38]

So when r = 4 we have

R(3, 3, 3, 3) ≥ 3R(3, 3, 3) +R(3)− 3 = 3.17 + 3− 3 = 51
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3 Van der Waerden’s theorem

3.1 Introduction

In this section we will explore Van der Waerden’s theorem which is one
of the most fundamental results in Ramsey theory, it is named after the
Dutch Mathematician Bartel Leendert Van der Waerden. Ramsey’s theorem
is concerned with the colourings of the elements of the set [X]k and looking
at the monochromatic subsets, where in Van Der Waerden’s theorem we will
be looking at the colourings of the integers and monochromatic arithmetic
progressions which arise.

Definition 3.1. An arithmetic progression is a sequence of numbers such
that the difference between any two consecutive terms is constant. A k-term
arithmetic progression is therefore of the form a, a+ d, a+ 2d, ...a+ (k− 1)d.

Example 3.2. Here are some examples of 4-term arithmetic progressions:

2, 4, 6, 8
5, 8, 11, 14

etc.

Van der Waerden first published the following result and proof in 1927.
He showed that if you partition the set of positive integers into two classes
then one class must have an arbitrarily long arithmetic progression. This
was then generalised to give what we shall call Van der Waerden’s theorem.
[10, p 29]

Theorem 3.3. (Van der Waerden’s theorem)
For all positive integers k and r, there exists a least positive integer w(k, r),
such that for all n ≥ w(k, r), if the set of integers {1, 2, ..., w(k, r)} is par-
titioned into r classes then at least one of the classes will contain a k-term
arithmetic progression.

Following from the notion of Ramsey’s theorem we can think of the parti-
tioning of the set of integers into r classes as colouring each element in the set
of integers with one of r colours, then we look for a monochromatic k-term
arithmetic progression (we shall use the idea of colours from now on). The
number w(k, r) is known as the Van der Waerden number and as with Ram-
sey numbers little of these numbers are known. The only known numbers to
date are w(3, 2) = 9, w(4, 2) = 35, w(5, 2) = 178, w(3, 3) = 27, w(3, 4) = 76
[13] and most recent w(2, 6) = 1132 which was found by formulating the
problem as a SAT question for a boolean formula in CNF and then using a
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SAT solver [15]. We also know the two general results that w(k, 1) = k and
w(2, r) = r + 1. We shall prove these and look at w(2, 3) = 9 before looking
at the proof of Van der Waerden’s theorem.

Theorem 3.4. For r, k ≥ 1 we have,
1) w(k, 1) = k
2) w(2, r) = r + 1

Proof. 1) This is trivial.
2) This was left as an exercise (exercise 2.2) by Landman and Robertson [17,
p 49] so we will give the proof here. In order to have a two-term arithmetic
progression we simply just need at least two integers to be coloured with the
same colour. By the pigeonhole principle w(2, r) = r + 1 for any r ≥ 1.

In order to prove that w(3, 2) = 9 we must first show that w(3, 2) ≥ 9.
To show this we show there is a colouring of {1, 2, ..., 8} with two colours,
say red and blue, such that there is no three-term monochromatic arithmetic
progression. Landman and Robertson [17, p22] give an example of a colour-
ing but we will give a different example. If we colour the eight integers as
follows:

1 2 3 4 5 6 7 8

Then there is clearly no three-term arithmetic progression. Hence we know
that w(3, 2) ≥ 9.

We now must show w(3, 2) ≤ 9, to do this we must show that for every
two colouring of {1, 2, ..., 9} there exists a monochromatic three-term arith-
metic progression. Let’s assume for a contradiction that there exists a two
colouring of {1, 2, ..., 9} which has no monochromatic three term arithmetic
progression. We shall use the colours red and blue again. Landman and
Robertson [17, p22] explain why 3 and 5 can not both be coloured red or
both be coloured blue. This is because lets say 3 and 5 are both red then
(1, 3, 5) cannot be monochromatic and hence 1 has to be coloured blue. Sim-
ilarly, (3, 4, 5) and (3, 5, 7) cannot be monochromatic and so 4 and 7 must
also be coloured blue. But then we have a blue (1, 4, 7) and similarly if 3 and
5 were both coloured blue we would have a red (1, 4, 7). It also true that 5
and 7 cannot be coloured the same colour and 4 and 6 cannot be coloured
with the same colour. Landman and Robertson [17, p22] do not give details
on these cases, so we shall fill in the gaps.
1) 5 and 7: If we colour both these red then we cannot have (5, 6, 7), (5, 7, 9)
or (3, 5, 7) being red. So we must colour 6, 9 and 3 blue but then that will
give us a blue (3, 6, 9). Hence 5 and 7 cannot be both coloured red and sim-
ilarly they cannot be both coloured blue.
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2) 4 and 6: If we colour both these red then we cannot have (4, 5, 6), (4, 6, 8)
or (2, 4, 6) being red. So we must colour 5, 8 and 2 blue but then that will
give us a blue (2, 5, 8). Hence 4 and 6 cannot be both coloured red and
similarly they cannot be both coloured blue.

Using similar ideas to Landman and Robertson [17, p22], if we set 5 to
be coloured red then we know we must have one of the following possibilities
of the colouring of {3, 4, 5, 6, 7}:

1): 3 4 5 6 7
2): 3 4 5 6 7

If 1) is true then we must colour 8 red to avoid (6, 7, 8) being blue. Then
2 must be blue to avoid having a red (2, 5, 8), 1 must be red so we don’t
have a blue (1, 2, 3) and 9 must be red to avoid having a blue (3, 6, 9). So we
colour the integers as follows:

1 2 3 4 5 6 7 8 9

But now (1, 5, 9) is red, a contradiction. As 2) is the reverse of 1) we can
use a symmetric argument to show that if 2) holds then we get a contradic-
tion. Hence, w(3, 2) ≤ 9 and so we know w(3, 2) = 9.

3.2 Proof of Van der Waerden’s theorem

In 1974 Graham and Rothschild [9] published a shorter proof than the original
of the Van der Waerden’s theorem. We shall give this proof whilst elaborating
on the details but before we start we shall give a few essential definitions.

Definition 3.5. An equivalence relation is a relation between elements of a
set, such that the relation is reflexive, transitive and symmetric. An equiva-
lence class is a class of elements of a set such that the elements in each class
bear the relation to each other but to no other elements in different classes.

Definition 3.6. The l-equivalence classes of [0, l]m are the set of (x1, ..., xm) ∈
[0, l]m where l appears in the ith rightmost positions and nowhere else for
0 ≤ i ≤ m. We therefore have m+ 1 l-equivalence classes.

Example 3.7. For m = 2, l = 6 we have the following three 6-equivalence
classes:
i = 0: All the (x1, x2) ∈ [0, 6]2 that does not contain 6.
i = 1: {(0, 6), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)}
i = 2: {(6, 6)}
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Definition 3.8. For any l,m ≥ 1 we define the statement s(l,m) to be:
For any r, there exists an integer N(l,m, r) such that for any function

C : [1, N(l,m, r)]→ [1, r]

there exists positive integers a, d1, d2, ..., dm such that, C(a +
∑m

i=1 xidi) is
constant on each l-equivalence class on [0, l]m.

Example 3.9. s(l, 1) is equivalent to Van der Waerden’s theorem (with
l = k). This is because if m = 1, then there are two l-equivalence classes
of [0, l]1 which are: [0, l − 1] and l by itself. So s(l, 1) says that there exists
N(l, 1, r) (w(l, r) in Van der Waerden terms) for any r and l, such that for
all functions C : [1, N(l, 1, r)] → [1, r], where we shall let [1, r] be a set of r
colours, there exists positive integer a and d such that,

C(a+ 0) = C(a+ d) = C(a+ 2d) = ... = C(a+ (l − 1)d)

and this gives us a monochromatic l-term arithmetic progression. Hence
s(l, 1) is equivalent to Van der Waerden’s theorem.

We shall now use these definitions to prove that s(l,m) holds for all l and
m and then we will have proved Van der Waerden’s theorem.

Theorem 3.10. s(l,m) holds for all l,m ≥ 1.

Proof. 1) s(l,m)⇒ s(l,m+ 1)
We shall use induction on m for this proof. Let M = N(l,m, r) and M ′ =
N(l, 1, rM), for a fixed r. Let C : [1,MM ′]→ [1, r] be given. We now define
C ′ to be the function C ′ : [1,M ′]→ [1, rM ] such that: C ′(k) = C ′(k′) if and
only if C(kM − j) = C(k′M − j) for all 0 ≤ j < M .

By the induction hypothesis we know there exists some a′ and d′ such
that C ′(a′+ xd′) is constant for x ∈ [0, l− 1] (as m = 1). This then gives us,
by the definition of C ′, that

C((a′ + xid
′)M − j) = C((a′ + xjd

′)M − j)

for all 0 ≤ j < M and xi, xj ∈ [0, l − 1].
Now, define the interval I = [a′M − (M − 1), a′M ]. Note that, as a′M +

xid
′M − j is defined on C for 0 ≤ j < M and xi ∈ [0, l−1], then a′M− j will

also be defined on C and this gives the interval I for the different possible j’s
(also the size of I is the same as the size of the interval [1,M ]). So, s(l,m)
can clearly apply to I. By choice of M there exists a, d2, ..., dm+1 where all
sums a+

∑m+1
i=2 xidi for xi ∈ [0, l] are in I and C(a+

∑m+1
i=2 xidi) are constant

on l-equivalence classes (because s(l,m) holds on I).
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If we set d′i = di for 2 ≤ i ≤ m + 1 and d′1 = d′M . Then, as a′M − j is
equivalent to I when 0 ≤ j < M , adding x1d

′M for x1 ∈ [0, l − 1] (if x1 = l
then we would be looking at the equivalence class with only one element in,
the one with all l’s), we know,

C(a+
m+1∑
i=1

xid
′
i) = C(a+

m+1∑
i=2

xidi)

as C(a′M− j) = C(a′M+xid
′M− j) for xi ∈ [1, l−1]. Therefore, s(l,m+1)

holds.

2) s(l,m)⇒ s(l + 1, 1)
Let m = r and let C : [1, N(1, r, r)] → [1, r] be given for a fixed r. Then as
we are assuming s(l,m) holds, there exists a, d1, d2, ..., dr such that:
1) a+

∑r
i=1 xidi is in [1, N(1, r, r)] for xi ∈ [0, l].

2) C(a+
∑r

i=1 xidi) is constant on l-equivalence classes.
We have r + 1 equivalence classes and so by the Pigeonhole principle we

must have two l-equivalence classes where C(a +
∑r

i=1 xidi) is constant for
both classes. If we let these two l-equivalence classes be the ones where l
appears only in the u and v (1 ≤ u < v ≤ r+ 1) rightmost positions, then as
{0, 0, ..., l, l, ...} is in these equivalence classes (with corresponding number of
l’s for each case), we have

C(a+
r∑
i=u

ldi) = C(a+
r∑
i=v

ldi)

and therefore

C((a+
r∑
i=v

ldi) + x(
v−1∑
i=u

di))

is constant for x ∈ [0, l]. This proves that s(l + 1, 1) holds if s(l,m) holds.
This is because in the m = 1 case we have two l + 1-equivalence classes,
which are {{0}, {1}, ..., {l}} and {l + 1}.

Finally, as s(1, 1) clearly holds (we will have two 1-equivalence classes with
only a one or a zero in), we know s(l,m) holds for all l,m ≥ 1

Proof. (Van der Waerden’s theorem)
By theorem 3.10., s(l,m) holds for all l,m ≥ 1 and so s(l, 1) holds for all
l. As discussed in example 3.9. s(l, 1) is equivalent to Van der Waerden’s
theorem.
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3.3 Szemerédi’s Theorem

When Van der Waerden gave the original proof of his theorem, the bounds
it gave for the numbers w(k, r) were very weak. In 1936, Paul Erdös and
Paul Turán gave two conjectures which would imply Van der Waerden’s the-
orem. The stronger of the two conjectures was disproved in 1942. The other
conjecture was what we now know as Szemerédi’s theorem, which is a very
important result in Mathematics. Szemerédi’s theorem was essential in the
proofs of many other theorems and results. For example it was one of the
three major theorems behind Tao and Greens [12] proof that there are arbi-
trarily long arithmetic progressions of primes. We shall now state Szemerédi’s
theorem. [8, 26, 11]

Theorem 3.11. (Szemerédi’s theorem)
For any δ > 0 and any positive integer k, there exists a positive integer n such
that: For any N ≥ n, any subset of {1, 2, ..., N} with at least δN elements
contains a k-term arithmetic progression.

Szemerédi’s Theorem says that in Van der Waerden’s theorem we can al-
ways find a monochromatic arithmetic progression in any colour that is used
often enough (i.e. δ = 1

r
).

It wasn’t until 1953 until some progress was made in proving the theorem,
where K. F. Roth proved it for the k = 3 case, using methods from Fourier
analysis. Unfortunately, Roth’s proof did not extend to general k as he had
hoped. In 1969, E. Szemerédi proved the theorem for the k = 4 case by a
intricate combinatorial argument. Finally, in 1974 E. Szemerédi proved the
theorem for general k by ’a masterpiece of combinatorial reasoning’ [10, p46].
Szemerédi’s proof used graph theoretic methods and introduced some new
important tools like the Szemerédi Regularity Lemma for graphs. Not long
after, in 1977 Furstenberg gave a different proof for the theorem which used
methods from ergodic theory [7]. Since then numerous new proofs (roughly
16) have been published for the theorem for example in 2001 Timothy Gow-
ers used Fourier analysis and combinatorics in ’A new proof of Szemerédi’s
Theorem’ [8] and in 2011 Henry Towsner gave a model theoretic proof in the
paper ’A model theoretic proof of Szemerédi’s theorem’ [26].

[8, 26, 11]
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4 Hales-Jewett Theorem

4.1 Introduction

The Hales-Jewett theorem, named after Mathematicians Alfred W. Hales
and Robert Jewett, is a generalisation of Van der Waerden’s theorem. In
the words of Graham and Rothschild the theorem is the heart of Ramsey
theory and without the result ’Ramsey theory would more properly be called
Ramseyian theorems’ [10, p35]. It is concerned with the colourings of n-
cubes over t elements and the monochromatic lines that arise. We shall first
introduce a few new definitions before stating the theorem.

Definition 4.1. The hypercube Cn
t is defined as,

Cn
t = {(x1, x2, ..., xn) : xi ∈ {0, 1, ..., t− 1}}

Definition 4.2. A line in Cn
t is a set of t points in Cn

t , call theseX0, X1, ..., Xt−1
where Xi = (xi1, xi2, ..., xin), and we have,
1) In at least one coordinate, j, we have xaj = a for 0 ≤ a < t.
2) In the other coordinates we have x0j = x1j = ... = xt−1,j

Example 4.3. For example if n = 2 and t = 4 then we have

C2
4 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3),

(3, 0), (3, 1), (3, 2), (3, 3)}

and in the diagram below the coloured lines demonstrates the lines in C2
4 .

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Note: only one of the diagonals is classed as a line in C4
2 .

We are now ready to state one of the fundamental results of Ramsey
theory, the Hales-Jewett theorem.
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Theorem 4.4. (Hales-Jewett theorem)
For all positive integers r and t there exists some N = HJ(r, t) such that if
n ≥ N then the following holds:
If the vertices of Cn

t are coloured with r colours then there exists a monochro-
matic line.

We can see how Van der Waerden’s theorem can be obtained from Hales-
Jewett theorem by naming each n-tuple in Cn

t as follows:
If (a1, a2, ..., an) is the n-tuple with ai ∈ {0, 1, ..., t − 1} then name this
a =

∑n
i=1 ait

i−1.
This will then give us the set {0, 1, ..., tn − 1}, if we colour this with r

colours then this gives us a colouring of Cn
t . If n is large enough we have

a monochromatic line and this then relates to a monochromatic arithmetic
progression of length t.

Example 4.5. Using C2
4 as in the previous example, we would label the

elements as follows:

(0, 0) = 0,
(1, 0) = 1,
(2, 0) = 2,
(3, 0) = 3,
(0, 1) = 4,
(1, 1) = 5,

.

.

.
(3, 3) = 15

Then any line in C2
4 will give us an arithmetic progression in the labels.

For example the line (0, 0), (1, 1), (2, 2), (3, 3) gives us the 4-term arithmetic
progression {0, 5, 10, 15}. So if we have a monochromatic line in C2

4 we will
have a monochromatic arithmetic progression of length four of {0, 1, ..., 15}.

In section 3 we introduced the Van der Waerden numbers w(k, r) similarly
we call HJ(r, t) (the minimum N such that the theorem holds) the Hales-
Jewett numbers but again we will not look too much at these.

4.2 Shelah’s proof

In 1987 Sharon Shelah found a new proof for the Hales-Jewett theorem and
therefore for Van der Waerden’s theorem too. This proof was very much
celebrated, it improved massively upon the upper bounds for w(k, r) and
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HJ(r, t) that had been previously found in previous proofs. In this section
we will give the proof of the Hales-Jewett theorem using Shelah’s proof which
we follow from Graham’s et al. account [10], however we will expand on
their explanations and provide our own examples to aid understanding of
the definitions used.

Throughout this section we will make the following small change to Cn
t :

Cn
t = {(x1, x2, ..., xn) : xi ∈ {1, ..., t}}

We start by defining a Shelah line.

Definition 4.6. We call L ⊂ Cn
t a Shelah line if there is some ordering of

L, l1, l2, ..., lt, where lk = (xk1, ..., xkn) and there exists i and j with 0 ≤ i <
j ≤ n so that:

xks =


t− 1 s ≤ i
k i < s ≤ j
t j < s

It will be very useful to see an example of a Shelah line.

Example 4.7. If we have t = 5, n = 4 and i = 1, j = 2 then the Shelah line
would be:

(4, 1, 5, 5)
(4, 2, 5, 5)
(4, 3, 5, 5)
(4, 4, 5, 5)
(4, 5, 5, 5)

Example 4.8. If we have t = 26, n = 10 and i = 4, j = 7 then the Shelah
line would be:

(25, 25, 25, 25, 1, 1, 1, 26, 26, 26)
(25, 25, 25, 25, 2, 2, 2, 26, 26, 26)

.

.

.
(25, 25, 25, 25, 25, 25, 25, 26, 26, 26)
(25, 25, 25, 25, 26, 26, 26, 26, 26, 26)

In general, in a Shelah line the first i coordinates are t− 1, then the next
j − i are the moving coordinate and the last n− j are t.

Definition 4.9. The point l = (x1, ..., xn) ∈ Cn
t is a Shelah point if it belongs

to a Shelah line.
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So for example in C4
5 , (4, 1, 5, 5) is a Shelah point as it is in the Shelah

line in Example 4.7.
It will be useful to bound the number of Shelah points in Cn

t for future
use. As 0 ≤ i < j ≤ n there are

(
n+1
2

)
ways to pick i and j and as there are

t elements of Cn
t in a Shelah line, there are at most

(
n+1
2

)
t Shelah points.

We next define a Shelah s-space.

Definition 4.10. Suppose n1, ..., ns are given and n = n1 + ... + ns. We
associate Cn

t with Cn1
t ×Cn2

t ×...×Cns
t (the Cartesian product). For 1 ≤ j ≤ s,

let Lj be a Shelah line of C
nj
t then L1 × ...× Ls is a Shelah s-space of Cn

t .

Example 4.11. If we have C10
26 with n1 = 4, n2 = 1 and n3 = 5 then a

Shelah 3-space is:

{(25, α, α, 26, β, 25, 25, γ, γ, 26) : α, β, γ ∈ {1, 2, ..., 26}}

Definition 4.12. Let φ : L1 × ...× Ls → Cs
t , where φ(ξ) = α1α2...αs (αj is

the value of the changing coordinate in Lj) be the canonical isomorphism.

Example 4.13. Going back to example 4.11 we have

φ((25, α, α, 26, β, 25, 25, γ, γ, 26)) = αβγ

Definition 4.14. A colouring of Cn
t is called fliptop if:

For any two points, P and Q, in Cn
t that have the exact same coordinates

except in one position where one has t and the other has t− 1, then P and
Q have the same colour.

The idea of colourings being fliptop will be used often later so we shall
look at a few examples of this idea.

Example 4.15. If we have t = 20 and n = 5, if a colouring of C5
20 is fliptop

then we have the following examples of elements in C5
20 that must have the

same colour.
1) (1, 20, 5, 9, 11) and (1, 19, 5, 9, 11) have the same colour.
2) (20, 20, 20, 20, 20), (19, 20, 20, 20, 20), (19, 20, 19, 20, 20), (19, 19, 19, 20, 20),
(19, 19, 19, 19, 20) and (19, 19, 19, 19, 19) must all have the same colour.
3) There is no condition of the colour of any two points that do not have
the exact same coordinates except for in one place where it is 20 or 19. For
example there is no condition on colour for any point that does not have a
20 or 19 in.

Definition 4.16. Let χ be a colouring that maps a set of elements to a set
of colours. Let L1× ...×Ls be a Shelah s-space with canonical isomorphism
φ : L1× ...×Ls → Cs

t . A colouring χ of L1× ...×Ls is fliptop if the colouring
χ′ of Cs

t given by χ′(P ) = χ[φ−1(P )] is fliptop.
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Example 4.17. If we have n = 10, t = 20, n1 = 4 and n2 = 6 then a Shelah
plane would be:

{(19, α, α, 20, 19, 19, β, β, β, 20) : α, β ∈ {1, 2, ..., 20}}

and so for a colouring of this Shelah plane to be fliptop we would need the
following points to be the same colour:

(19, 20, 20, 20, 19, 19, 20, 20, 20, 20)
(19, 19, 19, 20, 19, 19, 20, 20, 20, 20)
(19, 20, 20, 20, 19, 19, 19, 19, 19, 20)
(19, 19, 19, 20, 19, 19, 19, 19, 19, 20)

This is because a colouring of C2
20 is fliptop if (20, 20) and (19, 20) and (20, 19)

and (19, 19) are the same colour.

Note, for a Shelah line to be fliptop all we need is for the last two points
to be the same colour. For example, for a colouring of the Shelah line in
example 4.7 to be fliptop we would need (4, 5, 5, 5) and (4, 4, 5, 5) to be the
same colour. All that is left now until we can prove Hales-Jewett theorem is
to state and prove two lemmas and a theorem.

Lemma 4.18. Assume n ≥ c. If we colour Cn
t with c colours then there

exists a fliptop Shelah line (i.e. a Shelah line where the two points which
have a t and t− 1 in the block of changing coordinates, are the same colour).

Proof. For 0 ≤ i ≤ n define the n+ 1, Pi = (xi1, ..., xin) by the following:

xij =

{
t− 1 j ≤ i
t j > i

For example, in C4
26 our 5 Pi’s are,

P0 = (26, 26, 26, 26)

P1 = (25, 26, 26, 26)

P2 = (25, 25, 26, 26)

P3 = (25, 25, 25, 26)

P4 = (25, 25, 25, 25)

By the Pigeonhole principle there must be two of the Pi’s that have the same
colour, as n+ 1 > c. Let these two points be Pi and Pj and they are the last
two points in the Shelah line l1, ...lt, where lk = (xk1, ..., xkn) with,

xks =


t− 1 s ≤ i
k i < s ≤ j
t j < s
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hence we have a fliptop Shelah line. To demonstrate the last idea in this
proof let us look back at our example for C4

26. If for example P1 and P3 are
the two that are coloured the same then

{(25, α, α, 26) : α ∈ {1, ..., 26}}

is our fliptop Shelah line.

Using this lemma we can prove the following theorem and after that all
that is left to do before we can finally prove the Hales-Jewett theorem is to
prove one more lemma.

Theorem 4.19. Let r,s and t be fixed positive integers and define n1, ..., ns
by:

n1 = rt
s−1

n2 = r(
n1+1

2 )ts−1

and then
ni+1 = rAi

where,

Ai =

[∏
j≤i

(
nj + 1

2

)]
ts−1

We shall set n = n1 + ... + ns and then given an r-colouring, χ, of Cn
t we

have a fliptop Shelah s-space.

Proof. Associate Cn
t with Cn1

t × ... × Cns
t and write y ∈ Cn

t as y = y1, ..., ys
where yj ∈ C

nj
t . Now, we shall define the equivalence relation ≡ on Cns

t as
follows:

ys ≡ y′s ⇐⇒ χ(y1, ..., ys−1, ys) = χ(y1, ..., ys−1, y
′
s)

for all Shelah points y1, ...ys−1.
We saw before that Cn

t contains at most
(
n+1
2

)
t Shelah points. So Cni

t

contains at most
(
ni+1
2

)
t Shelah points and hence there are at most As−1

choices for the Shelah points y1, ..., ys−1. This then tells us that we have at
most ns = rAs−1 equivalence classes. Therefore, we can think of ≡ as being
an ns-colouring, χ̂, of Cns

t . We can therefore apply lemma 4.18. (as ns ≥ ns),
so there exists a Shelah line Ls ⊂ Cns

t , which is fliptop under χ̂.
We shall use reverse induction, so we shall assume that Ls, Ls−1, ..., Li+1

have been found and we shall look for Li. We shall now define the equivalence
relation ≡ on Cni

t by setting:

yi ≡ y′i ⇐⇒ χ(y1, ..., yi−1, yi, zi+1, ..., zs) = χ(y1, ..., yi−1, y
′
i, zi+1, ..., zs)
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for all Shelah points y1, ..., yi−1 and all choices of zi+1 ∈ Li+1, zi+2 ∈ Li+2, ..., Zs ∈
Ls. For each yj there are at most

(
nj+1
2

)
t choices for 1 ≤ j ≤ i− 1. For each

zj, i+1 ≤ j ≤ s, there are t choices as the Lj are already determined. Hence,
there are at most Ai−1 choices for y1, ..., yi−1, zi+1, ..., zs and so there are at
most ni = rAi−1 equivalence classes. As before we can think of ≡ as being an
ni-colouring, χ̂, of Cni

t . We can then again apply lemma 4.18., which gives
us a Shelah line Li ⊂ Cni

t that is fliptop under χ̂.
We are now ready to prove that the Shelah s-space L1, ...Ls is fliptop

under χ. Fix i, for 1 ≤ i ≤ s and let yi, y
′
i be the last two points of Li

and so they have the same colour under χ̂ and hence they are in the same
equivalence class. We therefore have,

χ(y1, ..., yi−1, yi, zi+1, ..., zs) = χ(y1, ..., yi−1, y
′
i, zi+1, ..., zs)

for all Shelah points y1, ..., Yi−1 and all zi+1 ∈ Li+1, zi+2 ∈ Li+2, ..., Zs ∈ Ls.
But for 1 ≤ j < i all zj ∈ Lj are obviously Shelah points so,

χ(z1, ..., zi−1, yi, zi+1, ..., zs) = χ(z1, ..., zi−1, y
′
i, zi+1, ..., zs)

for all zj ∈ Lj where 1 ≤ j ≤ s and j 6= i. So L1, ..., Ls is a fliptop Shelah
s-space as χ′ is fliptop where χ′(P ) = χ[φ−1(P )] for P ∈ Cs

t .

Lemma 4.20. Let s = HJ(r, t− 1), so that in any given r-colouring of Cs
t−1

there exists a monochromatic line. Then we have under any fliptop colouring
with r colours of Cs

t there exists a monochromatic line.

Proof. We know there is a monochromatic line l1, ..., lt−1 for any r-colouring
of Cs

t−1. Let lt be the point in Cs
t which is found by setting all the mov-

ing coordinates to a t and copying the none moving coordinates from lt−1.
To demonstrate this idea let us look at an example. If we had the line
(1, 3), (2, 3), (3, 3), (4, 3) in C2

4 then l5 would be (5, 3) where t = 5.
Then l1, ..., lt−1, lt is a line in Cs

t . If the colouring is fliptop, lt will be
the same colour as lt−1 as the only places the coordinates vary in lt and
lt−1 are where in lt they are t and in lt−1 they are t − 1. Then as l1, ..., lt−1
are all the same colour, the line l1, ..., lt−1, lt is a monochromatic line in Cs

t .
In our example if the line (1, 3), (2, 3), (3, 3), (4, 3) is monochromatic then
(1, 3), (2, 3), (3, 3), (4, 3), (5, 3) is a monochromatic line as the colouring is
fliptop so (4, 3) and (5, 3) must be the same colour.

We are finally ready to prove the Hales-Jewett theorem using the defini-
tions, lemmas and theorems we have discussed so far in this section.
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Proof. (Hales-Jewett theorem)
Let’s fix r and we shall use induction on t. For the base case, when t = 1 it is
trivial that HJ(r, 1) = 1 as we will only have one element in Cn

1 . So we shall
assume that s = HJ(r, t − 1) exists and we want to show that there exists
an n = HJ(r, t). Let n be given by theorem 4.19. and so by the theorem
given an r-colouring, χ, of Cn

t there is a fliptop Shelah s-space (L1× ...×Ls).
Let χ′ be the r-colouring of Cs

t given by χ′(y) = χ(φ−1(y)) where φ is the
canonical isomorphism φ : L1 × ...× Ls → Cs

t . Then as χ is fliptop χ′ must
be fliptop and by lemma 4.20. there exists a monochromatic line L ⊂ Cs

t .
We then have φ−1(L) which is a monochromatic line in Cn

t by definition of
χ′ and φ.
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5 The density version of The Hales-Jewett

theorem

We have already seen the density version of Van der Waerden’s theorem, it
is also true that the Hales-Jewett theorem has a density version also. The
density Hales-Jewett theorem was first stated and proved by H. Furstenburg
and Y. Katznelson and it is given below.

Theorem 5.1. For every positive integer t and all non zero real numbers δ
there exists an integer N such that the following holds:
If n ≥ N and A is any subset of Cn

t = {(x1, x2, ..., xn) : xi ∈ {1, ..., t}} with
|A| ≥ δtn, then A contains a line (as in definition 4.2.).
The least integer N, such that the above holds will be denoted by DHJ(t,δ).

H. Furstenburg and Y. Katznelson proved this for the t = 3 case in
1989 and then they extended their proof for general t in 1991 in [6]. They
used ergodic techniques that extended the techniques used by Furstenburg
in his first proof of Szemerédi’s theorem. In 2009 Timothy Gowers set up
the Polymath project, a massive on line collaboration of Mathematicians
carrying out research together, which focused on the Density Hales-Jewett
theorem. There are two parts to this Polymath project, the first focused on
proving the theorem using a non-ergodic method and the other part focused
on computing Density Hales-Jewett numbers and other related values. The
project was initially started as an experiment but it was a large success and
many other Polymath projects followed. The Density Hales-Jewett theorem
has been proved by a couple of other Mathematicians since the Polymath
project started including Tim Austin in 2009 (’Deducing the Density Hales-
Jewett Theorem from an infinitary removal lemma’ [2]) and P. Dodos et al.
in 2012 in ’A Simple Proof of the Density Hales-Jewett Theorem’ [5]. In
’A Simple Proof of the Density Hales-Jewett Theorem’ they give a purely
combinatorial proof that follows Polymath’s proof except that they simplify
the argument some what.

One of the reasons this theorem has attracted so much attention from
Mathematicians in the recent years, is that proving the Density Hales-Jewett
theorem then implies the Szemerédi’s Theorem. These new proofs for the
Density Hales-Jewett theorem by Polymath and P.Dodos et al. give ’arguably
the simplest proof yet known of Szemerédi’s Theorem’ [19, p 4].
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5.1 Proof of the Density Hales-Jewett theorem

In this section we shall look in some detail at the proof of the Density Hales-
Jewett theorem given by P. Dodos et al. [5]. Their proof is modeled after
Polymath’s proof, though it does differ in certain parts. Both the Polymath
and P. Dodos et al. proofs are based on the density increment method.

In general the density increment method is as follows:
If A has density δ in S and A does not contain a subset of the desired kind,
then there is a substructure S ′ of S such that the density of A inside S ′ is
at least δ + a, where a is a positive constant that only depends on δ. We
can then iterate this argument and if S is large enough then we can keep
iterating until the density is greater than 1, which gives us a contradiction.
For the density Hales Jewett case, S is Cn

t and the subset of the desired kind
is a line.

In order to achieve this we must first show that there exists some ’struc-
tured’ set B such that the density of A inside B is at least δ + a. We then
need to show that B can be partitioned into subspaces such that A has den-
sity at least δ + a in one of these subspaces of B. Both the Polymath and
Dodos et al. proofs prove the second part of this in the same way (we shall
come to this later) but Dodos et al. give a simpler way to solve the first step.

For the first step we need to have a probabilistic version of the Density
Hales-Jewett theorem, to do this Polymath used the idea of the equal-slices
measure (a probability measure on Cn

t ). However, P. Dodos et al. give a
different way to give a probabilistic version of the theorem which makes the
argument clearer, which we shall see soon.

5.1.1 Some new notation, definitions and preliminary tools

Before giving details of the proof of the Density Hales-Jewett theorem, we
shall introduce some new definitions and notations and give a few tools that
will be useful throughout the proof. The following definitions and notations
are given in [5, pp 3342-3345] but we shall provide our own examples. As in
section 4.2, we have Cn

t = {(x1, x2, ..., xn) : xi ∈ {1, ..., t}}.

Definition 5.2. For a fixed set of m distinct letters, say v1, ..., vm, an m-
variable word of Cn

t is a sequence of n elements of {1, ..., t} ∪ {v1, ..., vm},
where every vi for i ∈ {1, ...,m} appears at least once.

Example 5.3. An example of a 2-variable word of C4
4 is (1, 3, a, b), where

here v1 = a and v2 = b.

Definition 5.4. Let z be anm-variable word then z(a1, ..., am), where a1, ..., am ∈
{1, ..., t}, is obtained by replacing vi in z with ai for all i ∈ {1, ...,m}. Then
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an m-dimensional subspace of Cn
t is a set of the form

{z(a1, ..., am) : a1, ..., am ∈ {1, ..., t}}

If V is an m-dimensional subspace of Cn
t , then the set of lines of V will be

denoted by lines(V ).

Example 5.5. 1) A 1-dimensional subspace of Cn
t is just a line.

2) An example of a 2-dimensional subspace of C4
4 , where z is the 2-variable

word from the previous example, is:

{(1, 3, 1, 1), (1, 3, 1, 2), (1, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 2, 4),

(1, 3, 3, 1), (1, 3, 3, 2), (1, 3, 3, 3), (1, 3, 3, 4), (1, 3, 4, 1), (1, 3, 4, 2), (1, 3, 4, 3), (1, 3, 4, 4)}

Definition 5.6. The density of a subset A of Cn
t in V is given by |A∩V ||V | , we

denote it as densV (A). The density of A in Cn
t will simply be denoted by

dens(A).

Example 5.7. LetA = {(1, 2), (1, 1)}. The density of A in C2
2 = {(1, 1), (1, 2), (2, 1),

(2, 2)} is dens(A) = 2
4

= 1
2
.

Definition 5.8. Let V be an m-dimensional subspace. For k ∈ N0 where
2 ≤ k ≤ t, we have,

V |k = {z(a1, ..., am) : a1, ..., am ∈ {1, ..., k}}

Example 5.9. Let V be the 2-dimensional subspace of C4
4 given in example

5.5. and let k = 2, then we have

V |2 = {(1, 3, 1, 1), (1, 3, 1, 2), (1, 3, 2, 1), (1, 3, 2, 2)}

Definition 5.10. For x ∈ Cn
t and y ∈ C l

t we denote the concatenation of x
and y as x a y. For subsets, A ⊆ Cn

t and B ⊆ C l
t, the concatenation of A

and B is A a B = {x a y : x ∈ A, y ∈ B}.

Example 5.11. If x = (1, 5, 3, 1) and y = (1, 4, 2) then x a y = (1, 5, 3, 1, 1, 4, 2).

Finally, we introduce the numbers GR(t,m) which will be used later on.

Proposition 5.12. For all integers t ≥ 2 and m ≥ 1 there exists a least
integer GR(t,m) such that the following holds:
For every integer n ≥ GR(k,m) and all sets L of lines of Cn

t , there exists an
m-dimensional subspace, V, of Cn

t such that either:
1) Lines(V ) ⊆ L, or
2) Lines(V ) ∩ L = ∅
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We shall not give the proof of this proposition but it can be done by
repeatedly applying the Hales-Jewett theorem.

From now on in this section we shall write DHJt to denote that for every
0 < δ ≤ 1, DHJ(t, δ) is finite. We need just a few more tools before we can
move on to proving the density Hales-Jewett theorem.

The first of the results we need is that the density Hales-Jewett theorem
implies the multidimensional version of it. We shall start by stating the
multidimensional version of the Hales-Jewett theorem and then go on to
prove that DHJt implies it.

Theorem 5.13. For all positive δ, and integers t and m ≥ 1, there exists a
positive integer MDHJ(t,m, δ) such that the following is true:
For every n ≥ MDHJ(t,m, δ), every subset of Cn

t with density at least δ
contains an m-dimensional subspace of Cn

t .

As with the density Hales-Jewett theorem, we shall write MDHJt to
denote that for all positive δ and integers m, MDHJ(t,m, δ) is finite.

Proposition 5.14. For every t, DHJt implies MDHJt

We shall follow the proof from Polymath [24, p 676], however we will
discuss it in more detail.

Proof. We shall use induction on m. As we saw earlier a 1-dimensional
subspace of Cn

t is just a line, hence as we are assuming DHJt then the
m = 1 case holds. So we can assume the result for m− 1 and we shall show
the result holds for m.

Let A be a subset of Cn
t with density at least δ and letM = MDHJ(t,m−

1, δ
2
). For all y ∈ Cn−M

t let Ay = {x ∈ CM
t : x a y ∈ A}. Now, let G be the

set of all y ∈ Cn−M
t such that Ay has density at least δ

2
. Then G must have

density at least δ
2

in Cn−M
t . We can see this by assuming for a contradiction

that |G|
tn−M

≤ δ
2
, so |G| ≤ δtn−M

2
. We therefore have at most δtn−M

2
y’s where

y ∈ Cn−M
t such that x a y ∈ A for at least δtM

2
x’s. Therefore,

|A| ≤ δtn−M tM

2
=
δtn

2
≤ δtn

This is a contradiction as we know that A has density at least δ in Cn
t ,

therefore G must have density at least δ
2

in Cn−M
t .

By induction, for any y ∈ G, Ay must contain an m − 1-dimensional
subspace. There are at most D = (t + m − 1)M such subspaces. This is
because there is an injection from the set of all m− 1-dimensional subspaces
of CM

t to the set of all m− 1 dimensional subspaces of CM
t+m−1 .
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There must exist a subspace σ ⊆ CM
t , such that Gσ = {y ∈ Cn−M

t : x a
y ∈ A, ∀x ∈ σ}, where Gσ has density at least δ

2D
in Cn−M

t . We can see this
by the Pigeon hole principle. We know that, for all y ∈ G, Ay has at least
one m−1-dimensional subspaces and there are at most D possible subspaces
available, also

|G|
tn−M

≥ δ

2
=⇒ |G| ≥ δtn−M

2
=
δtn−MD

2D

so if we partition the elements of G into D subsets then by the Pigeon hole
principle at least one of these must have at least δtn−M

2D
elements and hence

there exists a subspace σ such that Gσ has density of at least δ
2D

.
Therefore if n−M ≥ DHJ(t, δ

2D
), then Gσ must contain a line, call this

line λ. Then σ × λ is an m-dimensional subspace of Cn
t which is contained

in A.

For the next two results before proving the density Hales-Jewett theorem,
we shall only state them, not prove them. In the following lemma we need
the following new notation:

Ax = {y ∈ Cn−l
t : x a y ∈ A}

where x ∈ C l
t and A is a subset of Cn

t .

Lemma 5.15. Let t ≥ 2 and m ≥ 1 be integers and let 0 < ε < 1. If
n ≥ ε−1tmm, then the following holds:
For every subset A of Cn

t with density greater than ε there exists some l < n
and an m-dimensional subspace of C l

t such that for all x ∈ V , dens(Ax) ≥
dens(A)− ε.

This lemma says that when a dense subset of Cn
t is restricted to a suitable

subspace of Cn
t , the dense subset becomes very uniformly distributed. The

proof of this theorem is fairly short and straightforward and just uses a logical
argument to show the result holds.

The next result combines both Proposition 5.14. and Lemma 5.15. to get
the following corollary which will be useful later on.

Corollary 5.16. Let t ≥ 2 be an integer and assume DHJt. Then for all
integers m ≥ 1 and all 0 < δ ≤ 1, there exists an integer MDHJ∗(t,m, δ)
such that the following holds:
If n ≥ MDHJ∗(t,m, δ), then for all subsets of Cn

t+1 with density at least δ,
there exists an m-dimensional subspace V of Cn

t+1 such that V |t is contained
in A.
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To prove this we would set MDHJ∗(t,m, δ) = ( δ
2
)−1(t + 1)MM , where

M = MDHJ(t,m, δ
2
). We would then show that if n ≥ MDHJ∗(t,m, δ)

and if A is a subset of Cn
t+1 with density at least δ, then there exists an

m-dimensional subspace V of Cn
t+1 such that V |t is contained in A. To show

this we make use of lemma 5.15.

5.1.2 Proving the Density Hales-Jewett theorem

We shall prove the Density Hales-Jewett theorem by induction on t. The
t = 2 case follows from Sperner’s theorem, which is given below.

Theorem 5.17. Let A be a collection of subsets of [n] = {1, ..., n} such that
A has more than

(
n
bn
2
c

)
elements. Then there exists distinct sets B,C ∈ A

such that B is a proper subset of C.

We can see that Sperner’s theorem gives DHJ2, there are 2n different
subsets of [n] and each one can be mapped to one of the 2n points of Cn

2 .
This is a one-one correspondence. A set X of [n] is mapped to a point of
Cn

2 in the following way, the elements of X tell us in what positions there
is a 1 and the elements in [n] that are not in X tell us where there is a 2.
For example if n = 5 and X = {1, 2, 4} then our point in C5

2 is (1, 1, 2, 1, 2).
Two subsets B, C of [n] corresponds to a line if one is a proper subset of
the other, for example if n = 5 and B = {1, 5, 4} and C = {1, 5} then C
is a proper subset of B. The set B corresponds to the point (1, 2, 2, 1, 1)
and C corresponds to the point (1, 2, 2, 2, 1) which is a line. Hence, proving
Sperner’s theorem proves DHJ2. P. Dodos et al. [5] do not give the proof of
this but we shall include it. We shall follow Polymath’s [24, p 673-674] proof
expanding on their details.

Proof. (Theorem 5.17)
Let us assume that no element of A is a proper subset of any other. To start
the proof we shall look at a way of choosing a random subset of [n]. Lets
choose a random permutation π of [n] and a random number m ∈ {0, ..., n}.
Let B = {π(1), ..., π(m)} and since no element of A is a proper subset of
another, for each possible π at most one m can be used so the set belongs to
A. Therefore the probability of choosing a set in A is at most 1

n+1
as there

are n+ 1 m to choose from.
Now the probability of choosing a particular set B that is of size m, is

equal to 1

(n+1)(nm)
as 1

n+1
is the probability of choosing the size m and there

are
(
n
m

)
different sets of size m. So to make A as large as possible but to

make sure the probability of choosing a set in A is at most (n+1)−1, we must
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choose A to consist of sets of size m such that 1

(nm)
is minimum. Equivalently

we want to make
(
n
m

)
maximum. To find out when this is maximum let us

look at the following: (
n

m− 1

)
≤
(
n

m

)
we have,(

n

m− 1

)
=

n!

(m− 1)!(n−m+ 1)!
=

n!

m!(n−m)!

m

n−m+ 1
=

(
n

m

)
m

n−m+ 1

so we get,(
n

m

)
m

n−m+ 1
≤
(
n

m

)
=⇒ m ≤ n−m+ 1 =⇒ m ≤ n+ 1

2
=⇒ m ≤ dn

2
e

and as
(
n
bn
2
c

)
=
(
n
dn
2
e

)
, if no element of A is a proper subset of another then

|A| ≤
(
n
bn
2
c

)
.

Before we start to carry out the main part of the proof, we shall give a
table (table 3) of all the different constants that will be used throughout the
proof for easy access.

m0 = DHJ(t, δ
4
) θ =

δ
4

(t+1)m0−tm0

η = δθ
48

γ = δη2

t

n(m, ε) = ε(t+ 1)mm λ = t+1
t

M0 = max{m0,
logη−1

logλ
} M1 = MDHJ∗(t,m, β)

F (m,β) = dβ−1(t+ 1 +m)M1(t+ 1)M1−mM1e F (1)(m,β) = F (m,β)

F (r+1)(m,β) = F (r)(F (m,β), β)

Table 3: Table of constants that will be used throughout the proof of the
density Hales-Jewett theorem [5].

From here onwards all the lemmas, propositions, corollaries and defini-
tions come from [5], we shall however give our own explanations and expand
on theirs and also give our own examples. We shall start by giving the propo-
sition that completes the induction step, that is if we assume DHJt, we have
DHJt+1.

Proposition 5.18. Let t ≥ 2 be an integer and assume DHJt. For all
0 < δ ≤ 1 and all integers d ≥ 1 there exists an integer N(t, d, δ) such that
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the following holds:
If n ≥ N(t, d, δ) and A is a subset of Cn

t+1 with density at least δ in Cn
t+1,

then either,
1) A contains a line of Cn

t+1, or
2) There exists a d-dimensional subspace V of Cn

t+1 such that densV (A) ≥
δ + γ

2
.

This is enough to prove the Density Hales-Jewett theorem. Assuming
Proposition 5.18. holds, if A has no line then there exists a V as above such
that densV (A) ≥ δ+ γ

2
. We can now repeat the argument on A∩V , if A∩V

does not contain a line then we can go to another subspace which has relative
density at least δ + γ

2
+ γ

2
. As the density cannot exceed 1, there can be at

most 2
γ

iterations before the density exceeds 1 and so if n is large enough we

have a contradiction and hence we have a line. [19, p 31]
As discussed earlier in order to prove Proposition 5.18., we must first start

by showing that if A has no line then A must correlate with a structured set
of Cn

t+1 more than we would expect. To get this result we must first state a
few lemmas and definitions. We shall start with the following lemma.

Lemma 5.19. Let m ≥ m0 be an integer and let 0 < δ ≤ 1. If n ≥
n(GR(t,m), η

2

2
) then we have:

For every subset A of Cn
t+1 with density at least γ there exists some l < n and

an m-dimensional subspace U of Cn
t+1 such that the following two statements

hold:
1) For all u ∈ U , dens(Au) ≥ δ − η2

2

2) For all lines l ∈ Lines(U |t) , (
⋂
u∈lAu) ≥ θ.

Where Au = {y ∈ Cn−l
t+1 : u a y ∈ A} for u ∈ U .

To prove this we would make use of lemma 5.15. and proposition 5.12
and we can now use this lemma to help us prove the following result.

Lemma 5.20. Let m ≥ m0 be an integer and let 0 < δ ≤ 1. Let n ≥
n(GR(t,m), η

2

2
) and let A be a subset of Cn

t+1 with density at least δ. Then
either:
1) There exists an m-dimensional subspace X of Cn

t+1 with densX(A) ≥ δ+ η2

2
,

or
2) There exists an m-dimensional subspace W of Cn

t+1 with densW (A) ≥ δ−2η
and |{l ∈ Lines(W |t) : l ⊆ A}| ≥ ( θ

2
)|Lines(W |t)|.

This lemma tells us that if we have a lack of density increment ( 1) doesn’t
hold) then we can find a subspace W of Cn

t+1 such that the density of A inside
W is very close to the density of A inside Cn

t+1 and there are plenty of lines
in A ∩ (W |t).
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From here onwards the proof will be of the same ideas as Polymath’s.
We shall introduce the important idea of insensitive sets in the following
definitions and we shall provide some examples of these. We shall use the
notation that for x, y ∈ Cn

t+1, we shall write x = (xr)
n
r=1 and y = (yr)

n
r=1.

Definition 5.21. The elements x, y ∈ Cn
t+1 are (i, j)-equivalent, for i, j ∈

{1, ..., t+ 1} with i 6= j, if for every s ∈ {1, ..., t+ 1} \ {i, j}

{r ∈ {1, ..., n} : xr = s} = {r ∈ {1, ..., n} : yr = s}

Example 5.22. If n = 5 and t + 1 = 4 then x = (3, 1, 1, 4, 3) and y =
(3, 2, 1, 4, 3) are (1, 2)-equivalent.

Definition 5.23. A subsetA of Cn
t+1 is (i, j)-insensitive, where i, j ∈ {1, ..., t+

1} and i 6= j, if for all x ∈ A and all y ∈ Cn
t+1, where x and y are (i, j)-

equivalent, then y ∈ A.
If A is a subset of V , where V is an m-dimensional subspace of Cn

t+1, for
each element z(a1, ..., am) in V (where z is the m-variable word that generates
V and ai ∈ {1, ..., t+ 1} for all i ∈ [m]) we identify it with the corresponding
(a1, ..., am) ∈ Cm

t+1. If A becomes an (i, j)-insensitive subset of Cm
t+1, then A

is (i, j)-insensitive in V .

Example 5.24. Let t + 1 = 4 and n = 3, then A = {(1, 2, 4), (1, 3, 4)} is
(2, 3)-insensitive.

Now we know the notion of an insensitive set we can move on to the next
lemma and then we will have all we need to be able to prove the first part
of proposition 5.18..

Lemma 5.25. Let m ≥ M0 be an integer and let 0 < δ ≤ 1. Now let n ≥
n(GR(t,m)η

2

2
) and let A be a subset of Cn

t+1 with density at least δ. Assuming
that A contains no line of Cn

t+1 and for every m-dimensional subspace X of

Cn
t+1, densX(A) = δ + η2

2
. Then there exists an m-dimensional subspace W

of Cn
t+1 and a subset C of W such that the following holds:

1) densW (C) ≥ θ
4

and C =
⋂t
i=1Ci where Ci is (i,t+1)-insensitive in W for

all i ∈ [t].
2) densW (A∩ (W \C)) ≥ (δ+ 6η)densW (W \C) and densW (A∩ (W \C)) ≥
δ − 3η.

To prove this we use an argument that uses lemma 5.20. Now we have
this result we can prove that if A contains no line then it must have density,
in a ’simple’ subset of Cn

t+1, of at least δ+ a constant that only depends on
δ. This will complete the first part of the proof, we shall give a proof of the
following Corollary which we follow from [5, p 3349] but as always we shall
provide more detailed explanations.
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Corollary 5.26. Let m ≥ M0 be an integer and let 0 < δ ≤ 1. Now let
n ≥ n(GR(t,m)η

2

2
) and let A be a subset of Cn

t+1 with density at least δ.
Assuming that A contains no line of Cn

t+1, there exists an m-dimensional
subspace W of Cn

t+1 and a set {D1, ..., Dt} of subsets of W such that:
1) Di is (i,t+1)-insensitive in W for all i ∈ [t],and
2) If we set D = D1 ∩ ... ∩Dt then we have densW (D) ≥ γ and densW (A ∩
D) ≥ (δ + γ)densW (D).

Proof. We shall look at two cases for this proof.
1) Firstly, let us assume there exists an m-dimensional subspace X of Cn

t+1

with densX(A) ≥ δ+ η2

2
. We shall set W = X and Di = X for all i ∈ [t]. As

Di = X for all i, clearly each Di is (i, t+ 1)-insensitive in W = X. If we set
D = D1 ∩ ... ∩Dt then D = X, so we have densW (D) = densX(X) = 1 ≥ γ

and densW (A∩D) = densX(A∩X) = densX(A) ≥ δ+ η2

2
≥ δ+γ as η2

2
≥ γ.

2) Now let us assume that for all m-dimensional subspaces X of Cn
t+1, we have

densX(A) < δ + η2

2
. So by lemma 5.25., there exists an m-dimensional sub-

space W of Cn
t+1 and a subset C = Ci∩...∩Ct of W , where each Ci is (i, t+1)-

insensitive in W for all i ∈ [t]. We also know that densW (A ∩ (W \ C)) ≥
(δ + 6η)densW (W \ C) and densW (A ∩ (W \ C)) ≥ δ − 3η.

Let
P1 = W \ C1 and Pi = (W \ Ci) ∩ C1 ∩ ... ∩ Ci−1

for i ∈ {2, ..., t}. Also let, for each i ∈ [t],

λi =
densW (Pi)

densW (W \ C)
and δi =

densW (A ∩ Pi)
densW (Pi)

(if Pi is empty then let δi = 0). As the set {P1, ..., Pt} is a partition of W \C,
we get

t∑
i=1

λiδi =
t∑
i=1

|Pi ∩W ||W |
|W ||(W \ C) ∩W |

|A ∩ Pi ∩W ||W |
|W ||Pi ∩W |

=
t∑
i=1

|A ∩ Pi ∩W ||W |
|(W \ C) ∩W ||W |

=
densW (A ∩ (W \ C))

densW (W \ C)
≥ δ + 6η

Hence, there exists an io ∈ [t] such that both λi0 ≥ 3η
t

and δi0 ≥ δ + 3η

holds. Otherwise, if for all i ∈ [t], λi0 <
3η
t

and δi0 < δ+ 3η then
∑t

i=1 λiδi <
3η(δ+ 3η) = 3ηδ+ 9η2 < δ+ 6η, as clearly η < 1

3
, this gives a contradiction.

We set the Di’s as follows : Di = Ci if i < i0, Di0 = W \Ci0 and Di = W
if i > i0. The set Di is (i, t+ 1)-insensitive in W for all i ∈ [t], as all Ci are.
Clearly W is also and as Ci0 is (i,t+1)-insensitive in W for all i ∈ [t] W \Ci0 is
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too. Now, Pi0 = (W \Ci0)∩C1∩ ...∩Ci0−1 = (W \Ci0)∩C1∩ ...∩Ci0−1∩W =
D1 ∩ ... ∩Dk. So,

densW (Pi0) =
densW (Pi0)

densW (W \ C)
densW (W \ C) = λi0densW (W \ C)

≥ (
3η

t
)densW (A ∩ (W \ C) ≥ 3η

t
(δ − 3η) ≥ γ

and,

densW (A ∩ Pi0) =
densW (A ∩ Pi0)
densW (Pi0)

densW (Pi0) = δi0densW (Pi0)

≥ (δ + 3η)densW (Pi0) ≥ (δ + γ)densW (Pi0)

as required.

We are now ready to prove the second part of Proposition 5.18.. We
want to show that any subset of Cn

t+1 that is of the form D = D1 ∩ ... ∩Dt,
where Di is (i, t + 1)-insensitive in Cn

t+1 can be partitioned into subspaces
with sufficient dimension. We shall start by showing the following result.

Lemma 5.27. Let m ≥ 1 be an integer, let 0 < β ≤ 1 and let i ∈ [t]. If
n ≥ F (m,β), then for every subset D of Cn

t+1 that is (i,t+1)-insensitive and
has dens(D) ≥ 2β, there exists a family V of pairwise disjoint m-dimensional
subspaces of Cn

t+1 which are contained in D and have dens(D \ ∪V) < 2β.

This has a slightly lengthy proof which uses an algorithm which gives
a new set of subspaces at each iteration with the density increasing. The
algorithm will eventually terminate and the result follows.

The following corollary uses this to complete the second part of the proof
of the Density Hales-Jewett theorem. We shall give a proof for this which we
follow from [5, p 3351] expanding on the details.

Corollary 5.28. Let m ≥ 1 be an integer, let 0 < β ≤ 1 and let r ∈ [t].
Also, let n ≥ F r(m,β) and for all i ∈ [r] let Di be an (i,t+1)-insensitive
subset of Cn

t+1. Set D = D1 ∩ ... ∩ Dr if dens(D) ≥ 2rβ, then there exists
a family V of pairwise disjoint m-dimensional subspaces of Cn

t+1 which are
contained in D and have dens(D \ ∪V) < 2rβ.

Proof. We shall prove this by induction on r, the r = 1 case is given by lemma
5.27.. So we shall assume that the result holds for up to r. We shall prove it
holds for r + 1. Let n ≥ F (r+1)(m,β) and let D1, ..., Dr+1 be subsets of Cn

t+1
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as described in the corollary. As F (r+1)(m,β) = F (r)(F (m,β), β), by the
induction hypothesis there exists a family, V1, of pairwise disjoint F (m,β)-
dimensional subspaces of Cn

t+1 which are all contained in D′ = D1 ∩ ... ∩Dr

and we have dens(D′ \∪V1) < 2rβ. Let V2 = {V ∈ V1 : densV (Dr+1) ≥ 2β}.
For all V ∈ V2 let BV be the set of m-dimensional subspaces of V which are
given by applying lemma 5.27. to V ∩Dr+1. If we set V = {W : V ∈ V2,W ∈
BV }, then V is a family of pairwise disjoint m-dimensional subspaces of Cn

t+1

which are clearly all contained in D = D1 ∩ ... ∩ Dr+1 as each W ∈ BV is
contained in V ∩ Dr+1 and as V ∈ V1, V is contained in D′. We also have
dens(D \ ∪V) < 2(r + 1)β as required.

We are finally ready to put everything together and complete the proof
of proposition 5.18. and therefore complete the proof of the density Hales-
Jewett theorem.

Proof. (Proposition 5.18.)

For every 0 < δ ≤ 1 and integer d ≥ 1, let β = γ2

4t
andm(d) = max{M0, F

(t)(d, β)}.
Fix n ≥ N(t, dδ) = n(GR(t,m(d)), η

2

2
) and fix a subset A of Cn

t+1 with den-
sity at least δ. Assume that A contains no line of Cn

t+1. By corollary 5.26.,
with m = m(d) here, there exists an m(d)-dimensional subspace W of Cn

t+1

and a set {D1, ..., Dt} of subsets of W such that Di is (i, t + 1)-insensitive
in W for all i ∈ [t]. Let D = D1 ∩ ... ∩Dt and we have densW (D) ≥ γ and
densW (A ∩D) ≥ (δ + γ)densW (D).

We know that, n ≥ N(t, d, δ) = n(GR(t,m(d)), η
2

2
) = 2

η2
(t+1)GR(t,m(d))GR(t,m(d)) ≥

2
η2

(t+1)GR(t,m(d))m(d) ≥ m(d) ≥ F (t)(d, β), and then by corollary 5.28., there
exists a family V of pairwise disjoint d-dimensional subspaces that are con-
tained in D and densW (D \ ∪V) < 2tβ = γ2

2
.

We know,

densW (A ∩D \ ∪V) ≤ densW (D \ ∪V) <
γ2

2
< γ ≤ densW (D)

and using this and the other previous inequalities we get,

densW (A∩∪V) = densW (A∩D)−densW (A∩(D\∪V)) ≥ (δ+γ)densW (D)−γ
2

2

≥ (δ+γ)densW (D)− γ
2
densW (D) = (δ+

γ

2
)densW (D) ≥ (δ+

γ

2
)densW (∪V)

Hence, there exists V ∈ V with,

densW (A ∩ V ) ≥ (δ +
γ

2
)densW (V ) =⇒ densW (A ∩ V )

densW (V )
≥ δ +

γ

2
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=⇒ densV (A) ≥ δ +
γ

2

as required.

We have now essentially proved three important theorems with one clever
proof. The Multidimensional Hales-Jewett theorem follows from the density
version as we have seen and probably most importantly the Szemerédi’s The-
orem follows from this. In the next chapter we will take a look at the sister
polymath project of the one we have just looked at.
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6 Density Hales-Jewett numbers

The Polymath project split into two projects. The first project focused on
proving the Density Hales-Jewett theorem whilst the other looked at Density
Hales-Jewett and Moser numbers. We shall focus on finding exact numbers
and bounds of Density Hales-Jewett numbers but we shall not look at Moser
numbers unfortunately. We shall mainly follow the article ’Density Hales-
Jewett and Moser Numbers’ by Polymath [20], however we shall make use of
Polymath’s on line resources and our own input. We shall start by defining
the Density Hales-Jewett number and giving some basic results.

Definition 6.1. The density Hales-Jewett number, denoted cn,t, is the size
of the largest subset of Cn

t = {(x1, x2, ..., xn) : xi ∈ {1, ..., t}} which is line
(as in definition 4.2.) free.

We can clearly see that we have the bound cn,t ≤ tn, as Cn
t has tn elements.

We also know the trivial exact values, cn,1 = 1 for all n, as there is only one
element in Cn

1 . Furthermore, in section 5.1.2 we proved Sperner’s theorem,
this tells us that cn,2 =

(
n
bn
2
c

)
.

We shall mainly focus on establishing upper and lower bounds for the
non-trivial t = 3 case, and whilst doing so we shall find a few exact values
for cn,3.

6.1 Lower bounds for cn,3

Polymath [20] use the idea of Fujimura sets in order to establish lower bounds
for cn,3. We shall start by introducing Fujimura sets and other notations
which we take from [20] but we provide our own examples and explanations.

Definition 6.2. Let 4n,t be the set of all tuples (a1, ..., at) that sum to n,
where ai is non-negative for all i.

Example 6.3. For n = 4 and t = 3, we have:

44,3 = {(4, 0, 0), (3, 0, 1), (3, 1, 0), (2, 0, 2), (2, 2, 0), (2, 1, 1), (1, 0, 3), (1, 3, 0)

(1, 2, 1), (1, 1, 2), (0, 0, 4), (0, 4, 0), (0, 3, 1), (0, 1, 3), (0, 2, 2)}

Next, we introduce simplices.

Definition 6.4. A simplex is a set of t points from 4n,t of the form:

(a1 + r, a2, ..., at), (a1, a2 + r, ..., at), ..., (a1, a2, ..., at + r)

where 0 < r ≤ n and a1 + a2 + ...+ at = n− r.
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Example 6.5. {(4, 0, 0), (2, 2, 0), (2, 0, 2)} is an example of a simplex in44,3,
with r = 2, a1 = 2 and a2 = a3 = 0.

We now have everything we need to define a Fujimura set.

Definition 6.6. A Fujimura set is a subset of 4n,t which contains no sim-
plices.

Example 6.7. Following on from our previous examples, an example of a
Fujimura set of 44,3 is,

B = {(4, 0, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (1, 3, 0), (1, 1, 2), (0, 4, 0), (0, 1, 3)}

There are other sets that are also Fujimura sets of 44,3.

From a Fujimura set, B, of 4n,t we can create a line free subset of Cn
t .

The set,
AB = ∪~a∈BΓ~a

where the cell Γa1,...,at is the set of elements in Cn
t which have exactly ai

i’s, is line free as B contains no simplices. This is because for any line,
(b1,1, ..., b1,n), ..., (bt,1, ..., bt,n), in Cn

t we have (b1,1, ..., b1,n) ∈ Γa1+r,a2,...,at , ...,
(bt,1, ..., bt,n) ∈ Γa1,a2,...,at+r.

Example 6.8. In our example, our line free set found from B would be,

AB = {(1, 1, 1, 1)} ∪ {(1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), (3, 1, 1, 1)} ∪ ...

∪{(2, 3, 3, 3), (3, 2, 3, 3), (3, 3, 2, 3), (3, 3, 3, 2)}
In summary, AB contains all the elements with four 1’s, all the elements with
three 1’s and one 3 etc.

The number of elements in Γa1,...,at is equal to n!
a1!a2!...at!

and so we get the
following lower bound:

cn,t ≥ |AB| =
∑

(a1,a2,...,at)∈B

n!

a1!a2!...at!

where B is a Fujimura set of 4n,t. In our example above AB has 44 elements.
We therefore know that c4,3 ≥ 44 as we have found a set of size 44 which is
line free. However, if we can build a Fujimura set such that AB is larger then
we can improve upon this bound.

Our aim is now to find ways to build Fujimura sets of 4n,3 such that AB
is as large as possible. Therefore we get the best lower bounds for cn,3 that
we can get from this method.
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Polymath [20] start by looking at the sets,

Bj,n = {(a, b, c) ∈ 4n,3 : a+ 2b 6= j (mod 3)}

for j = 0, 1, 2. We shall use this starting point also but we shall include our
own examples and explanations. Below is an example of the set B0,4.

Example 6.9. When n = 4 and j = 0 we get the set,

B0,4 = {(4, 0, 0), (3, 1, 0), (2, 0, 2), (2, 1, 1), (1, 0, 3), (1, 3, 0), (1, 2, 1), (0, 4, 0),

(0, 1, 3), (0, 2, 2)}

For example (4, 0, 0) is in the set B0,4 because a+ 2b = 4 + 2× 0 = 4 = 1 6= 0
(mod 3).

We first observe that if a simplex, (a+ r, b, c), (a, b+ r, c) and (a, b, c+ r)
lies in Bj,n then we have,

a+ r + 2b 6= j (mod 3)

a+ 2b+ 2r 6= j (mod 3)

a+ 2b 6= j (mod 3)

therefore r must be a multiple of 3. So if n < 3, there can be no simplices in
Bj,n and therefore it is a Fujimura set. Also, if n = 3 then B0,3 is a Fujimura
set as the only simplex that could be in B0,3 is the one where r = 3 but the
elements (3, 0, 0), (0, 3, 0) and (0, 0, 3) are not in B0,3.

We shall make a further two important observations about the sets Bj,n.
These are given in [20] but no proof was given so we shall give our own proof
for them.

Proposition 6.10. When n is not a multiple of 3, the sets Bj,n are rotations
of each other. Furthermore, they each give sets ABj,n of size 2.3n−1.

Proof. If (a, b, c) ∈ B0,n then by definition a + 2b 6= 0 (mod 3). We shall
look at which sets the rotations of (a, b, c) are in. As n is not a multiple of 3,
we have two possible cases either n = 1 (mod 3) or n = 2 (mod 3). We
shall look at each case separately.

1) n = 1 (mod 3):
For (c, a, b) we know c + 2a = n − b − a + 2a because n = a + b + c. So
c+2a = n+a−b = n+a+2b (mod 3). Hence, as a+2b = 1 or 2 (mod 3),
we have c+ 2a = n+ a+ 2b = 2 or 0 (mod 3). Therefore, (c, a, b) ∈ B1,n.
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Next for (b, c, a), we have b+2c = b+2n−2a−2b = 2n−b−2a = 2n+a+2b
(mod 3). As a+ 2b = 1 or 2 (mod 3), we have b+ 2c = 2n+ a+ 2b = 0 or
1 (mod 3). Hence, (b, c, a) ∈ B2,n.
Therefore, if n = 1 (mod 3) then the sets are rotations of each other.

2) n = 2 (mod 3):
For (c, a, b) we know c + 2a = n − b − a + 2a because n = a + b + c. So
c+2a = n+a−b = n+a+2b (mod 3). Hence, as a+2b = 1 or 2 (mod 3),
we have c+ 2a = n+ a+ 2b = 0 or 1 (mod 3). Therefore, (c, a, b) ∈ B2,n.
Next for (b, c, a), we have b+2c = b+2n−2a−2b = 2n−b−2a = 2n+a+2b
(mod 3). As a+ 2b = 1 or 2 (mod 3), we have b+ 2c = 2n+ a+ 2b = 2 or
0 (mod 3). Hence, (b, c, a) ∈ B1,n.
Therefore, if n = 2 (mod 3) then the sets are rotations of each other.

Finally, the sets Bj,n are rotations of each other therefore the correspond-
ing ABj,n will have 2.3n−1 number of elements. This is because there are 3n

elements in Cn
3 and each x ∈ 4n,3 is clearly in two of the three sets Bj,n

and as these sets are rotations we therefore have 2.3n−1 elements in each of
ABj,n .

We shall provide an example to demonstrate this proposition.

Example 6.11. For n = 4, we have n = 1 (mod 3) so if (a, b, c) ∈ B0,4

then (c, a, b) ∈ B1,4 and (b, c, a) ∈ B2,4 Therefore the Bj,4 for j = 0, 1, 2 are
as follows:

B0,4 = {(4, 0, 0), (3, 1, 0), (2, 0, 2), (2, 1, 1), (1, 0, 3), (1, 3, 0), (1, 2, 1), (0, 4, 0),

(0, 1, 3), (0, 2, 2)}

B1,4 = {(0, 4, 0), (0, 3, 1), (2, 2, 0), (1, 2, 1), (3, 1, 0), (0, 1, 3), (1, 1, 2), (0, 0, 4),

(3, 0, 1), (2, 0, 2)}

B2,4 = {(0, 0, 4), (1, 0, 3), (0, 2, 2), (1, 1, 2), (0, 3, 1), (3, 0, 1), (2, 1, 1), (4, 0, 0),

(1, 3, 0), (2, 2, 0)}

The next proposition concerns the cases when n is a multiple of 3.

Proposition 6.12. When n is a multiple of 3, B1,n and B2,n are reflections
of each other but B0,n is not in any way equivalent to B1,n and B2,n.
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Proof. If (a, b, c) ∈ B1,n then we know a + 2b 6= 1 (mod 3). We also know
n = 0 (mod 3) as n is a multiple of 3 and we know that a+ b+ c = n. We
can use these facts to show that the reflection (c, b, a) of (a, b, c) is in the set
B2,n. We have,

c+2b = n−b−a+2b = n+b−a = n+b+2a = n+(a+2b)+(a−b) = (a+2b)+(a+2b)

(mod 3)

So if a + 2b = 0 (mod 3), then c + 2b = 0 (mod 3) and if a + 2b = 2
(mod 3), then c + 2b = 1 (mod 3). Therefore (c, b, a) ∈ B2,n if (a, b, c) ∈
B1,n. Hence B1,n and B2,n are reflections of each other.

B0,n is not equivalent to the other two sets as for example B0,n does not
contain any of the the corners of 4n,3 (the corners are (n, 0, 0), (0, n, 0) and
(0, 0, n)).

We shall again provide an example to demonstrate this proposition.

Example 6.13. For n = 3, the sets Bj,3 are as follows:

B0,3 = {(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1)}

B1,3 = {(3, 0, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (0, 3, 0), (0, 0, 3), (0, 1, 2)}

B2,3 = {(0, 0, 3), (1, 0, 2), (0, 2, 1), (1, 1, 1), (0, 3, 0), (3, 0, 0), (2, 1, 0)}

We can clearly see in this example that B1,3 and B2,3 are reflections of each
other but B0,3 has no relationship with the other two sets.

So when n is not a multiple of 3 the sets ABj,n for j = 0, 1, 2 are all the
same size so we can work with any of the three sets. However that is not the
case when n is a multiple of 3. We need to work out if it is best to work with
B0,n or one of the other sets. Polymath [20] tell us that in fact the set AB0,n

is slightly larger than AB1,n and AB2,n , when n is a multiple of 3. Polymath
[20] however give no explanation of this fact so we shall provide one. We can
see this by looking at table 4 which shows how many elements, with the first
number in the triple as indicated in the left hand column, that is in Bj,n for
j = 0, 1, 2.

The results follows a pattern as we go down the table. Firstly, B1,n and
B2,n have one more element than B0,n, then B0,n has one more element than
the other two and then they all have the same number of elements. This then
repeats again. So B1,n and B2,n will always have the same number of elements
but B0,n will have one less, one more or the same number of elements than
the other two. However, as B0,n does not contain (n, 0, 0), (0, n, 0) or (0, 0, n)
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(a, b, c) B0,n B1,n B2,n

(n,−,−) 0 1 1
(n− 1,−,−) 2 1 1
(n− 2,−,−) 2 2 2
(n− 3,−,−) 2 3 3
(n− 4,−,−) 4 3 3
(n− 5,−,−) 4 4 4
...

...
...

...

Table 4: A table showing how many elements of a certain form, given in the
first column, that are in the sets B0,n, B1,n and B2,n.

but they are contained in both the other sets, AB0,n will be slightly larger
than AB1,n and AB2,n . We shall therefore work with B0,n from now on.

As we discussed earlier B0,n is a Fujimura set for n ≤ 3, hence we can
find the following lower bounds:

B0,1 = {(1, 0, 0), (0, 1, 0)} ⇒ |AB0,1 | = 2⇒ c1,3 ≥ 2

B0,2 = {(2, 0, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1)} ⇒ |AB0,2 | = 6⇒ c2,3 ≥ 2

B0,3 = {(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1)} ⇒ |AB0,3 | = 18

⇒ c3,3 ≥ 18

For n > 3, B0,n is not a Fujimura set, we can however remove points from
the set to ensure there are no three points of the form (a+ r, b, c), (a, b+ r, c)
and (a, b, c+ r) and therefore making the new set a Fujimura set.

For 3 < n ≤ 6 the only simplices in B0,n is when r = 3. This is because
we know that r has to be a multiple of 3 and r ≤ n. So for 3 < n < 6, r = 3
is the only possible r and when n = 6 if r = 6 then our simplex would be
(6, 0, 0), (0, 6, 0), (0, 0, 6) but none of these three elements are in B0,6.

For 3 < n ≤ 6, we shall manually find all the simplices in B0,n and remove
one point from each in such a way that we maximise the size of the line free
set. Polymath [20] give the resulting sets from doing this but provide no
further information and have some mistakes in their results.

6.1.1 Lower bounds for cn,3 for 4 ≤ n ≤ 6

We shall start with n = 4.
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6.1.1.1 n = 4

For n = 4 the only possible simplices have r = 3, so a simplex is of the form
(a + 3, b, c), (a, b + 3, c) and (a, b, c + 3), where a + b + c = 4 − 3 = 1. We
have three different possible simplices that could be in B0,4, which are:

(4, 0, 0), (1, 3, 0), (1, 0, 3)

(3, 1, 0), (0, 4, 0), (0, 1, 3)

(3, 0, 1), (0, 3, 1), (0, 0, 4)

All the elements in the first two lines are in B0,4 so we shall remove one from
each. From the first simplex we shall remove (4, 0, 0) as this only gives us
one element in the line free set. Similarly, for the second simplex we shall
remove (0, 4, 0). The third possible simplex is not in B0,4. Our Fujimura set
is therefore,

B = B0,4\{(4, 0, 0), (0, 4, 0)} = {(3, 1, 0), (2, 0, 2), (2, 1, 1), (1, 0, 3), (1, 3, 0),

(1, 2, 1), (0, 1, 3), (0, 2, 2)}

Our resulting line free subset of C4
3 is AB = ∪(a,b,c)∈BΓ(a,b,c) (we remember

that here Γ(a,b,c) is the set of all elements in C4
3 with exactly a 1’s, b 2’s and

c 3’s). The size of AB is equal to
∑

(a,b,c)∈B
n!

a!b!c!
= 52. Hence, c4,3 ≥ 52.

6.1.1.2 n = 5

For n = 5, the possible simplices in B0,5 have the form (a+3, b, c), (a, b+3, c)
and (a, b, c+ 3) where a+ b+ c = 5− 3 = 2. There are six different possible
combinations of a, b and c so we have six possible simplices that could be in
B0,5. These are,

(5, 0, 0), (2, 3, 0), (2, 0, 3)

(3, 2, 0), (0, 5, 0), (0, 2, 3)

(3, 0, 2), (0, 3, 2), (0, 0, 5)

(4, 1, 0), (1, 4, 0), (1, 1, 3)

(3, 1, 1), (0, 4, 1), (0, 1, 4)

(4, 0, 1), (1, 3, 1), (1, 0, 4)

The third and fourth of the above simplices are not in B0,5 so we do
not need to worry about them. As for the n = 4 case we shall remove one
element from each simplex in such a way we maximise the line free set. For
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the first simplex we remove (5, 0, 0), for the second we shall remove (0, 5, 0),
for the fifth simplex we shall remove (0, 4, 1) (note we could have removed
(0, 1, 4) instead, it will make no difference) and finally for the sixth simplex
we shall remove (4, 0, 1) (again we could of removed (1, 0, 4) instead). So our
Fujimura set is as follows,

B = B0,5\{(5, 0, 0), (0, 5, 0), (0, 4, 1), (4, 0, 1)} = {(3, 2, 0), (3, 1, 1), (2, 3, 0),

(2, 0, 3), (2, 1, 2), (1, 0, 4), (1, 3, 1), (1, 2, 2), (0, 1, 4), (0, 2, 3)}
Our resulting line free subset of C5

3 is AB = ∪(a,b,c)∈BΓ(a,b,c) (Γ(a,b,c) is the set
of all elements in C5

3 with exactly a 1’s, b 2’s and c 3’s). The size of AB is
equal to

∑
(a,b,c)∈B

n!
a!b!c!

= 150. Hence, c5,3 ≥ 150.

6.1.1.3 n = 6

For n = 6, the only simplices that could be in B0,6 are those of the form
(a+3, b, c), (a, b+3, c) and (a, b, c+3) where a+ b+ c = 6−3 = 3. There are
ten different possible a, b and c that sum to 3. However we can immediately
see that if one of a, b or c is equal to 3 and the other two are zero then the
resulting simplex will not be in B0,6. We then have seven possible simplices
left, which are:

(5, 1, 0), (2, 4, 0), (2, 1, 3)

(5, 0, 1), (2, 3, 1), (2, 0, 4)

(4, 2, 0), (1, 5, 0), (1, 2, 3)

(4, 0, 2), (1, 3, 2), (1, 0, 5)

(3, 2, 1), (0, 5, 1), (0, 2, 4)

(3, 1, 2), (0, 4, 2), (0, 1, 5)

(4, 1, 1), (1, 4, 1), (1, 1, 4)

The last one is not in B0,6 so we do not need to worry about it. We shall again
remove one from each simplex. We shall remove (5, 1, 0), (5, 0, 1), (1, 5, 0),
(1, 0, 5), (0, 5, 1) and (0, 1, 5). There was a slight mistake in Polymath’s [20]
paper as they missed (5, 0, 1) out. If we remove these elements from B0,6 we
get a Fujimura set which is,

B = B0,6\{(5, 1, 0), (5, 0, 1), (1, 5, 0), (1, 0, 5), (0, 5, 1), (0, 1, 5)} = {(4, 2, 0),

(4, 0, 2), (3, 2, 1), (3, 1, 2), (2, 4, 0), (2, 0, 4), (2, 3, 1), (2, 1, 3), (1, 2, 3), (1, 3, 2),

(0, 4, 2), (0, 2, 4)}
Our resulting line free subset of C6

3 is AB = ∪(a,b,c)∈BΓ(a,b,c). The size of AB
is equal to

∑
(a,b,c)∈B

n!
a!b!c!

= 450. Hence, c6,3 ≥ 450.
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6.1.2 Lower bounds for cn,3 for n > 6

In summary, we have the following lower bounds for cn,3 so far,

c1,3 ≥ 2; c2,3 ≥ 6; c3,3 ≥ 18; c4,3 ≥ 52; c5,3 ≥ 150; c6,3 ≥ 450

We can carry on finding the simplices that are in B0,n by hand and re-
moving one element from each simplex (the one that contributes the smallest
number of elements in the line free set). However, this is very time consuming
especially as n gets larger. We shall therefore use Python to do this for us.
First of all we tell Python to calculate the set B0,n, then find all simplices in
B0,n and remove one element from each simplex in such a way we maximise
AB (our line free subset in Cn

3 ). We shall then get Python to calculate the
size of the line free set AB. The code for this is given in appendix A of the
paper and the results from this method is shown in the table 5.

n Lower bound for cn,3 n Lower bound for cn,3
1 2 11 95832
2 6 12 287496
3 18 13 834834
4 52 14 2445300
5 150 15 7335900
6 450 16 21359052
7 1302 17 62748972
8 3780 18 188246916
9 11340 19 549430752
10 32844 20 1617908292

Table 5: Lower bounds for cn,3

For 1 ≤ n ≤ 9 the lower bounds in the above table are the best known
lower bounds for cn,3. Polymath do publish better lower bounds for n greater
than 9 in [20] but they provide little information on how they came to these
results. We shall try improve upon and extend our results in table 5 further.

Polymath [20] point out a simplification they found when n is a multiple
of 3 and also for when n is not a multiple of 3. We shall discuss these
simplifications and give an explanation to why they are true, which Polymath
do not provide.

6.1.2.1 A simplification when n is a multiple of 3

When n is a multiple of 3, if we know B0,n we can quickly find the set B0,n+3.
The set B0,n+3 contains all the elements in B0,n but with one added to each
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(i.e. if (a, b, c) is in B0,n then (a + 1, b + 1, c + 1) is in B0,n+3) and then
new elements with a zero in. Also, if a set F contains no simplices then
the set G = {(a + 1, b + 1, c + 1) : (a, b, c) ∈ F} also contains no simplices.
To see this we shall look for a contradiction. Assume there exists a simplex
(a+r, b, c), (a, b+r, c) and (a, b, c+r) in the set G then (a+r−1, b−1, c−1),
(a− 1, b+ r− 1, c− 1) and (a− 1, b− 1, c+ r− 1) is a simplex in the set F ,
a contradiction.

We shall use these facts to find which elements of B0,n for n = 9, 12, 15, 18
(Polymath do not include any information at all for n = 18) we can use to
make a Fujimura set which should hopefully improve upon our previous lower
bounds in table 5.

n = 9

Firstly, let us look back on the work we did for n = 6. Notice that the
elements we removed from B0,6 to create a Fujimura set are (5, 1, 0) and all of
it’s permutations. We also note the elements in the Fujimura set are (4, 2, 0)
and (3, 2, 1) and permutations. If we add one to (4, 2, 0) and (3, 2, 1) we get
(5, 3, 1) and (4, 3, 2). The set of all the permutations of (5, 3, 1) and (4, 3, 2)
is a subset of B0,9 and it contains no simplices (as shown above).

To build a Fujimura set for n = 9, as well as adding one to all elements
of the Fujimura set for n = 6, we can add new elements that contain a zero
from B0,9. We have (0, 8, 1), (0, 7, 2), (0, 5, 4) and permutations in B0,9 which
contain a zero. We just need to decide which ones we can add to the set of all
the permutations of (5, 3, 1) and (4, 3, 2) so that the set contains no simplices
and is such that the line free set is as large as possible. We cannot have
(0, 5, 4) and its permutations alongside (0, 7, 2) and its permutations as you
can form simplices between some combination of permutations of (0, 5, 4),
(0, 7, 2) and (4, 3, 2). For example (0, 5, 4), (3, 2, 4) and (0, 2, 7) is a simplex.
Also we cannot have (0, 5, 4) and its permutations alongside (0, 8, 1) and its
permutations as you can form simplices between some combination of per-
mutations of (0, 5, 4), (0, 8, 1) and (5, 3, 1). For example (0, 5, 4), (0, 8, 1) and
(3, 5, 1) is a simplex. We can however have (0, 8, 1), (0, 7, 2) and permutations
together alongside (4, 3, 2) and (5, 3, 1) and permutations. We however, get
a larger resulting line free set if we include (0, 5, 4) and permutations with
all the permutations of (5, 3, 1) and (4, 3, 2). Therefore our Fujimura set is

B = {(5, 3, 1), (4, 3, 2), (0, 5, 4) and permutations}

Note this is B0,9 with (6, 2, 1), (0, 8, 1), (0, 7, 2) and permutations re-
moved. The size of the line free subset, AB, of C9

3 is equal to 11340 (which
is the same as our lower bound found before).
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n = 12

We can use the same method to find which elements of B0,12 form a Fu-
jimura set in hope that we may improve our previous lower bound for n = 12.
So we add one onto each element in the Fujimura set found above for n = 9.
We get (6, 4, 2), (5, 4, 3), (1, 6, 5) and permutations. We then need to include
elements of B0,12 with zeros in. These are (0, 11, 1), (0, 10, 2), (0, 8, 4), (0, 7, 5)
and permutations. We just need to find which ones we can add to the set of
(6, 4, 2), (5, 4, 3), (1, 6, 5) and permutations such that there are no simplices
in the set and such that the resulting line free set is as large as possible. The
elements, (0, 7, 5) and permutations would give 4752 elements in the line free
set which is more than the sum of what the other three and permutations
would give. Therefore, we shall include (0, 7, 5) and permutations in our Fu-
jimura set. We can also add (0, 10, 2) and permutations to (0, 7, 5), (6, 4, 2),
(5, 4, 3), (1, 6, 5) and permutations without forming a simplex but we cannot
add either of the other two. Our resulting Fujimura set is,

B = {(6, 4, 2), (5, 4, 3), (1, 6, 5), (0, 7, 5), (0, 10, 2) and permutations}

The size of the line free subset AB of C12
3 is 287892. So c12,3 ≤ 287892,

this improves upon our previous bound by 396.

n = 15

For n = 15 we shall add one to all the elements in the Fujimura set
found for n = 12 above. We get (7, 5, 3), (6, 5, 4), (2, 7, 6), (1, 8, 6), (1, 11, 3)
and permutations. We now need to choose which of the elements in B0,15

with zeros in we shall include also in our Fujimura set. Our options are
(0, 14, 1), (0, 13, 2), (0, 11, 4), (0, 10, 5), (0, 8, 7) and permutations. The ele-
ments, (0, 8, 7) and permutations will contribute 38610 elements to the line
free set which is again greater than all the others put together. So we shall
definitely include (0, 8, 7) and permutations in our Fujimura set. The only
other elements with a zero in that we could add to (7, 5, 3), (6, 5, 4), (2, 7, 6),
(1, 8, 6), (1, 11, 3), (0, 8, 7) and permutations to ensure there are no simplices
are (0, 11, 4) and its permutations. Our resulting Fujimura set is therefore,

B = {(7, 5, 3), (6, 5, 4), (2, 7, 6), (1, 8, 6), (1, 11, 3), (0, 8, 7), (0, 11, 4)

and permutations}

The size of the line free subset, AB, of C15
3 is 7376850. So c15,3 ≤ 7376850,

this improves our previous bound by 40950.
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n = 18

Finally, for n = 18 we shall add one to all the elements in the Fujimura
set found for n = 15 above. We get (8, 6, 4), (7, 6, 5), (3, 8, 7), (2, 9, 7),
(2, 12, 4), (1, 9, 8), (1, 12, 5) and permutations. We now need to choose which
of (0, 17, 1), (0, 16, 2), (0, 14, 4), (0, 13, 5), (0, 11, 7) and (0, 10, 8) we shall add
to create a Fujimura set such that the resulting line free set is as large as
possible. Again the number of elements (0, 10, 8) and its permutations will
give for our line free set is more than the sum of all the others put together.
So we shall definitely include (0, 10, 8). If we have the set of all permutations
of (8, 6, 4), (7, 6, 5), (3, 8, 7), (2, 9, 7), (2, 12, 4), (1, 9, 8), (1, 12, 5) and (0, 10, 8)
then we can also include (0, 13, 5) and (0, 16, 2) and still keep the Fujimura
property. Our Fujimura set is,

B = {(8, 6, 4), (7, 6, 5), (3, 8, 7), (2, 9, 7), (2, 12, 4), (1, 9, 8), (1, 12, 5), (0, 10, 8),

(0, 13, 5), (0, 16, 2) and permutations}

The size of the line free subset, AB, of C18
3 is 190638306. So c18,3 ≤

190638306, this improves our previous bound by 2391390.

Generalisation

We can generalise this simplification. When we go from n = 3m to
n = 3(m+1) we add one onto all elements and then include new elements with
zeros in. Polymath [20, p 10], give a general formula for this. If n = 3m, then
the Fujimura set is given by the following elements and all their permutations:

(−7 +m,−3 +m, 10 +m), (−7 +m,m, 7 +m), (−7 +m, 3 +m, 4 +m),

(−6 +m,−4 +m, 10 +m), (−6 +m,−1 +m, 7 +m), (−6 +m, 2 +m, 4 +m),

(−5 +m,−1 +m, 6 +m), (−5 +m, 2 +m, 3 +m), (−4 +m,−2 +m, 6 +m),

(−4 +m, 1 +m, 3 +m), (−3 +m, 1 +m, 2 +m), (−2 +m,m, 2 +m),

(−1 +m,m, 1 +m)

And for x ≥ 0 and y = 0, 1

(−8−y−2x+m,−6+y−2x+m, 14+4x+m), (−8−y−2x+m,−3+y−2x+m, 11+4x+m),

(−8− y− 2x+m, y+ x+m, 8 + x+m), (−8− 2x+m, 3 + x+m, 5 + x+m)

This then gives us a Fujimura set for n = 3m (ignoring any that have a
negative number in). For larger n these Fujimura sets can be time consuming
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n Lower bound for cn,3 n Lower bound for cn,3
3 18 33 2.38842074523E+15
6 450 36 6.33857586458E+16
9 11340 39 1.68533359471E+18
12 287892 42 4.48787358958E+19
15 7376850 45 1.19656848219E+21
18 190638306 48 3.19362786072E+22
21 4962044826 51 8.53115912807E+23
24 1.29909551418E+11 54 2.28060881535E+25
27 3.41696938401E+12 57 6.10050759146E+26
30 9.02072683291E+13 60 1.63273507586E+28

Table 6: Lower bounds (found from the simplification discussed) for cn,3
when n is a multiple of 3.

to create so we shall use Python to create the Fujimura set from the above
generalisation and then find the size of the corresponding line free set. Table
6 gives the set of results of lower bounds for cn,3 (n a multiple of 3) which
were found using the Python code as described above and which can be seen
in the appendix.

These are the best lower bounds known for n = 3, 6, 9, 12, 21, 24. Up to
date values can be found from a link on [18].

6.1.2.2 A simplification when n is not a multiple of 3

When n is not a multiple of three, say n = 3m − 1 or n = 3m − 2 for some
m, if we first find a lower bound for n = 3m we can then easily find a lower
bound for n = 3m − 1 or n = 3m − 2. Polymath [20] briefly mention this
simplification but give little further information and explanations. We shall
start by looking at the n = 3m− 1 case.

n = 3m− 1

Let B be a Fujimura set for n = 3m. In the line free set AB if we take
all the elements that start with a 1 and remove this 1 from them, we then
have a set of elements in C3m−1

3 . Furthermore, as AB is a line free set our
new set in C3m−1

3 is line free also. We saw earlier that when n is a multiple
of 3 our Fujimura set contains elements (a, b, c) and all their permutations,
therefore the number of elements in AB that begin with a 1 is exactly 1

3
. So

c3m−1,3 ≥ c3m,3
3

. We shall see a quick example for when m = 1.
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Example 6.14. We found earlier that for n = 6 our Fujimura set, B, is
the set, (4, 2, 0), (3, 2, 1) and permutations. We found the set AB has 450
elements. If we take all the elements in AB that begin with a one (for
example (1, 1, 1, 1, 2, 2)) and remove the first one (for example (1, 1, 1, 1, 2, 2)
becomes (1, 1, 1, 2, 2)) then we have a line free set in C5

3 . We have one third
as many elements in this new set for C5

3 than we do for AB hence it has 150
elements. We can also find the corresponding Fujimura set for n = 5 which
is C = {(a, b, c) : (a+ 1, b, c) ∈ B, a ≥ 0}.

n = 3m− 2

We can do a similar thing for when n = 3m − 2. If B is a Fujimura set
for n = 3m. If we take all the elements in the line free set AB that start with
1,2, then we get a line free subset of C3m−2

3 (because AB is a line free set).
Roughly 1

9
of the elements in AB begin with 1,2 because 1

3
of AB begin with

a 1 and 1
3

have a 2 in the second position so there are roughly 1
9

as many.
Hence we get a lower bound for c3m−2,3 that is roughly 1

9
the size of c3m,3.

6.1.2.3 Resulting lower bounds from these simplifications

Using these two simplifications means we can improve upon some of our lower
bounds from earlier and we can also use these to get some new lower bounds
too. We can alter our Python code that created our lower bounds for c3m,3
to also give us our new bounds from these simplifications. This code can be
seen in the appendix. Table 7 gives us the lower bounds for 1 ≤ n ≤ 20
found from this method. See appendix for a larger table of results.

n Lower bound for cn,3 n Lower bound for cn,3
1 2 11 95964
2 6 12 287892
3 18 13 837850
4 52 14 2458950
5 150 15 7376850
6 450 16 21564380
7 1302 17 63546102
8 3780 18 190638306
9 11340 19 559502880
10 32864 20 1654014942

Table 7: Lower bounds for cn,3 found from the simplifications discussed.
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This is as far as we shall go in regards to improving these lower bounds
but table 8 shows the best known lower bounds known so far which are taken
from [18] (a fuller table can be found in the appendix).

n Lower bound for cn,3 n Lower bound for cn,3
1 2 11 96338
2 6 12 287892
3 18 13 854139
4 52 14 2537821
5 150 15 7528835
6 450 16 22517082
7 1302 17 66944301
8 3780 18 198629224
9 11340 19 593911730
10 32864 20 1766894722

Table 8: Best known lower bounds for cn,3

The rest of the paper will now focus on finding upper bounds in hope of
finding a few actual values for cn,3.

6.2 Upper bounds and exact values for cn,3

We can straight away give the exact values for n = 0, 1, both these values
are trivial. For n = 0 we clearly have c0,3 = 1. For n = 1, there are three
elements in C1

3 which are (1), (2) and (3). If we take any two of these we have
a line free set, but all three of them together form a line. Hence c1,3 = 2.

The next theorem will allow us to deduce the next few upper bounds.
This is taken from [20] but we shall provide our own proof for this.

Theorem 6.15. For all n,

cn+1,3 ≤ 3cn,3

Proof. We can write Cn+1
3 as the union of three copies of Cn

3 as follows

Cn+1
3 = {(x1, x2, ..., xn, 1) : (x1, x2, ..., xn) ∈ Cn

3 }∪{(x1, x2, ..., xn, 2) : (x1, x2, ..., xn) ∈ Cn
3 }

∪{(x1, x2, ..., xn, 3) : (x1, x2, ..., xn) ∈ Cn
3 }

Therefore, we get cn+1,3 ≤ 3cn,3.
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Now using theorem 6.15. and the fact that c1,3 = 2 we can find an upper
bound for c2,3. We get

c2,3 ≤ 3c1,3 = 6

as we found the lower bound c2,3 ≥ 6 in the last section we can deduce that
c2,3 = 6.

Similarly for n = 3 using theorem 6.15. we get,

c3,3 ≤ 3c2,3 = 18

and in the last section we found that c3,3 ≥ 18, hence we know c3,3 = 18. We
can keep doing this, for example c4,3 ≤ 3c3,3 = 54 but we will get no good
enough bounds to give us any more exact values.

In the rest of this paper we shall establish the exact values for when n = 4,
give a brief account how we would deduce the exact value when n = 5 and
then from this how we find the exact value for n = 6. We shall start with
n = 4.

6.2.1 Upper bound for c4,3

We follow the method from [20] in order to find the exact value for c4,3 but
we shall add a lot of extra explanations. In order to get the best upper bound
we can get for c4,3, we first need to find all the line free subsets of C2

3 which
are of size 6 (c2,3 = 6 ).

Lemma 6.16. There are only four different line free subsets of size 6 of C2
3

which are as follows,

x = AB2,2 = {(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)}

y = AB2,1 = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3)}

z = AB2,0 = {(1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2)}

w = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

Proof. We have 9 elements in C2
3 , and 84 subsets of size 6. We find the above

line free sets by checking through all 84 subsets of size 6. We however know
from the previous section that the sets AB2,n for n = 0, 1, 2 will be line free
subsets for C2

3 .

We can now use this to find line free subsets of C3
3 which are close to

the maximal size of c3,3 = 18. We first note that we can split C3
3 into three

subsets. The three subsets are, all the elements of the form (1, ∗, ∗), all the
elements of the form (2, ∗, ∗) and all the elements of the form (3, ∗, ∗), where
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(∗, ∗) ∈ C2
3 . In the same way we can split a subset D ⊆ C3

3 into three subsets
D1, D2 and D3 (where Di is the (∗, ∗) part of all the elements of the form
(i, ∗, ∗) ∈ D) of C2

3 . Let us see a quick example of this notation.

Example 6.17. Let D = {(1, 1, 2), (2, 2, 2), (1, 3, 2), (3, 2, 1)} ∈ C3
3 . Then

our corresponding subsets of C2
3 are D1 = {(1, 2), (3, 2)}, D2 = {(2, 2)} and

D3 = {(2, 1)}.

We follow with a quick lemma.

Lemma 6.18. If D ∈ C3
3 is line free then the subsets D1, D2 and D3 are

line free also. The converse however is not true.

Proof. We shall look for a contradiction. Suppose there is some line in D1.
If we add a one to the beginning of every element in D1 we get a subset of
D. This new subset clearly has a line also, so this would mean that D would
contain a line which is a contradiction. We can do the same for D2 and D3.

If all of Di for i = 1, 2, 3 are line free then this does not necessarily mean
that D is line free. It would be possible to have a line in D where each
element of the line comes from a different Di.

If D is a subset of C3
3 we can write D = D1D2D3 = {(1, ∗, ∗) : (∗, ∗) ∈

D1}∪{(2, ∗, ∗) : (∗, ∗) ∈ D1}∪{(3, ∗, ∗) : (∗, ∗) ∈ D1}. Let us look at a quick
example of this.

Example 6.19. If x, y and z are as in lemma 6.16. then we can write

zxy = {(1, 1, 1), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 1), (1, 3, 2)}∪{(2, 1, 2), (2, 1, 3),

(2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 3)}∪{(3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 3), (3, 3, 2),

(3, 3, 3)}

We note that AB0,3 = xyz, AB1,3 = zxy and AB2,3 = yzx (in [20], Poly-
math get AB1,3 and AB2,3 the wrong way round). We are now ready to find
the subsets of C3

3 which are close to the maximal size 18.

Lemma 6.20. The only 17-element line free subsets of C3
3 are xyz with 1

point removed or yzx or zxy with (1, 1, 1), (2, 2, 2) or (3, 3, 3) removed.

Proof. If we have a 17 element line free subset of C3
3 , call this set D, as dis-

cussed above we can split it into 3 sets that are also line free (D = D1D2D3).
As c2,3 = 6 our only option is that two of D1, D2 and D3 has six elements
and the other has five (17 = 6 + 6 + 5). We know that C2

3 only has four
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6-element subsets which are x, y, z and w. Hence two of D1, D2 and D3

must be from x, y, z or w.
If both of the six element Di are the same (x, y, z or w) then the five

element set must be in the complement in order to not create a line. But the
complement of x, y, z and w only has 3 elements each, so we can not have
two the same.

If one of the six element Di is w and the other is x, y or z, then the
set with five elements in is in the complement of the two sets. The set w
shares 4 elements in common with each of x, y and z so we shall have to use
the remaining five elements in C2

3 . However, you will then get a diagonal as
(1, 1), (2, 2) and (3, 3) is not in w, so our two six element Di’s must be a
combination of x, y and z.

By symmetry we may assume that the two six-element Di’s are x and y,
so the five element one is z with a point removed. There are six different
possibilities for which of D1, D2 and D3 are x, y and z. If we have them
in the orders xzy, yxz or zyx then there are too many lines that we need
to remove. Therefore the remaining orders are xyz, yzx and zyx. Both of
yzx and zyx contain the diagonal so we remove one of (1, 1, 1), (2, 2, 2) or
(3, 3, 3) from it. The set xyz does not contain a line so we can remove any
point from this.

Polymath [20] provide no proof at all for the next lemma so we shall fill
this gap in.

Lemma 6.21. The only 18 element line free subset of C3
3 is xyz.

Proof. If D is an 18-element subset of C3
3 then we can split it into three sets

D = D1D2D3 where D1, D2 and D3 are subsets of C2
3 . If D is line free then

so are D1, D2 and D3. Hence as c2,3 = 6 all of D1, D2 and D3 must be of
size 6 (18 = 6 + 6 + 6). Therefore D1, D2 and D3 must be made from x, y, z
and w. As in the last lemma we can not have two of the same or one with a
w in. So they must be a combination of x, y and z. The only combination of
x, y and z that give no line is xyz. Therefore xyz is the only line free subset
of C3

3 that has size 18.

We now have everything we need to find the best possible upper bound
for c4,3.

Lemma 6.22.
c4,3 ≤ 52

Proof. Let A be a line free set in C4
3 . Similar to the n = 3 case we can split

A into three line free sets, A = A1A2A3 where A1, A2 and A3 are in C3
3 . If
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two of Ai are of size 18 then by the previous lemma they must both be of
the form xyz. Then the third Ai must be in the complement of xyz, but as
there are 27 elements in C3

3 and 18 elements in xyz there are only 9 possible
elements left for the third Ai. Then we have, 18 + 18 + 9 = 45 which is not
what we want. So at most one of the Ai can have size 18. So 18+17+17 = 52
gives us the best bound as we can not have any bigger without having two
or more 18 element sets.

Combining this upper bound with the lower bound we found in the last
section we now know that c4,3 = 52.

6.2.2 Upper bound for c5,3

We shall only give a brief description on how Polymath [20] prove that c5,3 ≤
150. Firstly they find all the line free subsets of C4

3 that are close to the
maximum 52. From the previous section we know that,

AB0,4\{(1, 1, 1, 1), (2, 2, 2, 2)}

AB1,4\{(3, 3, 3, 3), (2, 2, 2, 2)}
AB2,4\{(1, 1, 1, 1), (3, 3, 3, 3)}

are line free subsets of C4
3 with 52 elements and it can be shown that these

are the only line free subsets with 52 elements.
Furthermore, the only line free subsets of C4

3 that have 51 elements are
these three sets above with one point removed from each.

The only 50 element line free subsets of C4
3 are formed by removing two

points from each of the three sets above or is one of the permutations of the
set

X = Γ(3,1,0) ∪ Γ(3,0,1) ∪ Γ(2,2,0) ∪ Γ(2,0,2) ∪ Γ(1,1,2) ∪ Γ(1,2,1) ∪ Γ(0,2,2)

It is enough to show that the only 50 element line free subsets of C4
3 are

as described above as then the other two claims follow.
This can then be used to show that there is no line free subset of C5

3 of
size 151 and therefore c5,3 ≤ 150. We then can deduce that c5,3 = 150 as in
the previous section we found the lower bound c5,3 ≥ 150.

6.2.3 Upper bound for c6,3

We can now use theorem 6.15. and the fact that c5,3 = 150 to find an upper
bound for c6,3. We have,

c6,3 ≤ 3c5,3 = 3.150 = 450
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Therefore, we have c6,3 = 450 as we know c6,3 ≥ 450 from the previous
section.

6.3 Summary and further research

In this chapter we have only just touched on density Hales-Jewett numbers.
We showed how to find the best known lower bounds (to date) of cn,3 for
1 ≤ n ≤ 10 and n = 12, 21, 22, 23, 24, 25 (the rest of our lower bounds
can be improved upon slightly). We found these lower bounds by following
Polymath’s [20] method of finding Fujimura sets, B, such that the resulting
line free set AB = ∪a∈BΓa is as large as possible. In order to find the larger
line free sets, AB, we found simplifications and used Python.

We then, with Polymath’s [20] guidance, found upper bounds of cn,3 for
0 ≤ n ≤ 6 that then led us to find the following exact values,

c0,3 = 1

c1,3 = 2

c2,3 = 6

c3,3 = 18

c4,3 = 52

c5,3 = 150

c6,3 = 450

and in fact these are the only known values for cn,3.
There are other upper and lower bounds we can find for cn,t, including

the following asymptotic lower bound that Polymath prove in [20],

cn,t ≥ tn(−O( l
√
logn))

where l is the largest integer that satisfies 2t > 2l. All these bounds that we
have discussed improve upon the bounds that were previously known as a
result of the proofs of the Density Hales-Jewett theorem. For example from
Polymath’s [19] proof we get the following bound,

cn,3 << 3nm−0.5

where if n can be written as an exponential tower of 2’s (for example 65536 =

222
2

) with m 2’s then the above bound holds.
A lot more work can be done to improve upon the bounds known for cn,t,

especially for t > 3. Hopefully in the future more precise bounds (and even
maybe more exact values) will start to appear.
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Functional Analysis. 11(3), pp 465-588

[9] Graham, R.L. and Rothschild, B. L. 1974. A Short Proof of van der
Waerden’s Theorem on Arithmetic Progressions.American Mathematical
Society. 42(2), pp. 385-386

[10] Graham, R.L. et al. 1990. Ramsey Theory. 2nd ed. New York: John
Wiley and Sons, Inc

[11] Green, B. and Tao, T. 2007. Szemerédi’s Theorem. [Online]. [Accessed
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A Appendix

Python codes

Python code for establishing lower bounds for cn,3 given in table 5.

import math

# This c r e a t e s B 0 , n .

n=20
B 0n =[ ]
for i in range (n+1):

a=i
for j in range (n−a +1):

b=j
c=n−b−a
i f ( a+2∗b) % 3!=0:

B 0n . append ( [ a , b , c ] )

#This f i n d s a l l s i m p l i c e s in B 0 , n and puts the e lement t h a t
#c o n t r i b u t e s to the l e a s t number in the l i n e f r e e s e t from each
#simplex i n t o a l i s t .

rem =[ ]
for i in range (3 , n+1 ,3) :

for j in B 0n :
d=j [ 0 ]
e=j [ 1 ]
f=j [ 2 ]

i f [ d−i , e+i , f ] and [ d−i , e , f+i ] in B 0n :
g=math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l (d)∗
math . f a c t o r i a l ( e )∗math . f a c t o r i a l ( f ) )
h=math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l (d−i )∗
math . f a c t o r i a l ( e+i )∗math . f a c t o r i a l ( f ) )
k=math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l (d−i )∗
math . f a c t o r i a l ( e )∗math . f a c t o r i a l ( f+i ) )
l i s t =[g , h , k ]

i f g==min( l i s t ) :
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rem . append ( j )

else :
i f h==min( l i s t ) :

rem . append ( [ d−i , e+i , f ] )

else :
rem . append ( [ d−i , e , f+i ] )

else :
pass

#This par t s imply removes d u p l i c a t e s in the l i s t .

rem1 =[ ]
for i in rem :

i f i not in rem1 :
rem1 . append ( i )

#This removes the chosen e lements from B 0 , n .

for i in rem1 :
B 0n . remove ( i )

#F i n a l l y , t h i s c a l c u l a t e s the s i z e o f the r e s u l t i n g l i n e f r e e s e t A B .

s=0
for i in B 0n :

l=i [ 0 ]
m=i [ 1 ]
o=i [ 2 ]
s+=math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l ( l )∗
math . f a c t o r i a l (m)∗math . f a c t o r i a l ( o ) )

print s
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Python code for establishing lower bounds for cn,3 when n is a multiple
of 3 given in table 6.

import math

#This par t c r e a t e s the Fujimura s e t f o r n=3m.

for m in range ( 2 1 ) :
Fuj i =[ ]
l =[ [−7 ,−3 ,10] , [−7 ,0 ,7 ] , [−7 ,3 ,4 ] , [−6 ,−4 ,10] , [−6 ,−1 ,7 ] ,
[ −6 ,2 ,4 ] , [ −5 , −1 ,6 ] , [ −5 ,2 ,3 ] , [ −4 , −2 ,6 ] , [ −4 ,1 ,3 ] , [ −3 ,1 ,2 ] ,
[ −2 ,0 , 2 ] , [ −1 ,0 , 1 ] ]
n=3∗m
print n
for i in l :

i f i [0 ]+m >= 0 and i [1 ]+m >= 0 and i [2 ]+m >= 0 :
Fuj i . append ( [ i [0 ]+m, i [1 ]+m, i [2 ]+m] )

for y in range ( 2 ) :
for x in range(((−8+m)/2)+2) :

i f −8−y−2∗x+m >= 0 :
Fuj i . extend ([[−8−y−2∗x+m,−6+y−2∗x+m,14+4∗x+m] ,
[−8−y−2∗x+m,−3+y−2∗x+m,11+4∗x+m] ,
[−8−y−2∗x+m, y+x+m,8+x+m] ] )

i f −8−2∗x+m >= 0 :
Fuj i . append([−8−2∗x+m,3+x+m,5+x+m] )

f u j i =[ ]
for i in Fuj i :

i f i not in f u j i :
f u j i . append ( i )

#This then c a l c u l a t e s the s i z e o f the corresponding l i n e f r e e s e t .

s=0
for i in f u j i :

l=i [ 0 ]
m=i [ 1 ]
o=i [ 2 ]
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s+=6∗(math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l ( l )∗
math . f a c t o r i a l (m)∗math . f a c t o r i a l ( o ) ) )

print s
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Python code for creating the lower bounds given in table 7.

import math

a=10
lowerbounds =[ ]

for m in range ( a ) :

# This f i n d s the lower bound f o r when n=3m

Fuj i =[ ]
l =[ [−7 ,−3 ,10] , [−7 ,0 ,7 ] , [−7 ,3 ,4 ] , [−6 ,−4 ,10] , [−6 ,−1 ,7 ] ,
[ −6 ,2 ,4 ] , [ −5 , −1 ,6 ] , [ −5 ,2 ,3 ] , [ −4 , −2 ,6 ] , [ −4 ,1 ,3 ] , [ −3 ,1 ,2 ] ,
[ −2 ,0 , 2 ] , [ −1 ,0 , 1 ] ]
n=3∗m

for i in l :
i f i [0 ]+m >= 0 and i [1 ]+m >= 0 and i [2 ]+m >= 0 :

Fuj i . append ( [ i [0 ]+m, i [1 ]+m, i [2 ]+m] )

for y in range ( 2 ) :
for x in range(((−8+m)/2)+2) :

i f −8−y−2∗x+m >= 0 :
Fuj i . extend ([[−8−y−2∗x+m,−6+y−2∗x+m,14+4∗x+m] ,
[−8−y−2∗x+m,−3+y−2∗x+m,11+4∗x+m] ,
[−8−y−2∗x+m, y+x+m,8+x+m] ] )

i f −8−2∗x+m >= 0 :
Fuj i . append([−8−2∗x+m,3+x+m,5+x+m] )

f u j i =[ ]
for i in Fuj i :

i f i not in f u j i :
f u j i . append ( i )

s=0
for i in f u j i :
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l=i [ 0 ]
m=i [ 1 ]
o=i [ 2 ]
s+=6∗(math . f a c t o r i a l (n)/ f loat (math . f a c t o r i a l ( l )∗
math . f a c t o r i a l (m)∗math . f a c t o r i a l ( o ) ) )

# This g i v e s the lower bound f o r n=3m−1

p=s / f loat (3 )

# This f i n d s the lower bound f o r when n=3m−2

f u j i 2 =[ ]
for i in f u j i :

r =[ i , [ i [ 0 ] , i [ 2 ] , i [ 1 ] ] , [ i [ 1 ] , i [ 0 ] , i [ 2 ] ] , [ i [ 1 ] , i [ 2 ] , i [ 0 ] ] ,
[ i [ 2 ] , i [ 1 ] , i [ 0 ] ] , [ i [ 2 ] , i [ 0 ] , i [ 1 ] ] ]
f u j i 2 . extend ( r )

x =[ ]
for j in f u j i 2 :

i f j not in x :
x . append ( j )

q=0
for i in x :

i f i [ 0 ] ! = 0 and i [ 1 ] ! = 0 :
q+=(math . f a c t o r i a l (n−2)/ f loat (math . f a c t o r i a l ( i [0 ]−1)∗
math . f a c t o r i a l ( i [1 ]−1)∗math . f a c t o r i a l ( i [ 2 ] ) ) )

lowerbounds . extend ( [ q , p , s ] )

print lowerbounds
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B Appendix

Tables of results

Extensions of the results in tables 7 and 8. The third column is taken
from [18].

n Lower bound found from the
simplifications in section 6.1.2. Best known lower bounds for cn,3

21 4962044826 4962044826
22 14611830116 14611830116
23 43303183806 43303183806
24 129909551418 129909551418
25 383588257270 383598657870
26 1138989794670 1139029911270
27 3416969384010 3417089733810
28 10111356055886 10112634438206
29 30069089443032 30073742968632
30 90207268329096 90221228905896
31 267400102010680 267491466230000
32 796140248408736 796459952460900
33 2388420745226208 2.39E+15
34 7089752982959760 7.09E+15
35 2.1128586215262948E+16 2.11E+16
36 6.338575864578885E+16 6.34E+16
37 1.8836261183853485E+17 1.89E+17
38 5.61777864904243E+17 5.63E+17
39 1.685333594712729E+18 1.69E+18
40 5.012805842639805E+18 5.02E+18
41 1.4959578631920351E+19 1.50E+19
42 4.487873589576105E+19 4.50E+19
43 1.3358489209432411E+20 1.34E+20
44 3.988561607309349E+20 4.00E+20
45 1.1965684821928045E+21 1.20E+21
46 3.5638649173284304E+21 3.58E+21
47 1.06454262024094E+22 1.07E+22
48 3.1936278607228196E+22 3.21E+22
49 9.516820001579667E+22 9.56E+22
50 2.84371970935659E+23 2.86E+23
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n Lower bound found from the
simplifications in section 6.1.2. Best known lower bounds for cn,3

51 8.53115912806977E+23 8.58E+23
52 2.543344848890257E+24 2.56E+24
53 7.602029384516345E+24 7.65E+24
54 2.2806088153549035E+25 2.30E+25
55 6.801586281022731E+25 6.85E+25
56 2.0335025304855415E+26 2.05E+26
57 6.1005075914566246E+26 6.15E+26
58 1.819974629850514E+27 1.84E+27
59 5.442450252878161E+27 5.49E+27
60 1.6327350758634484E+28 1.65E+28
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