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Abstract

The theory that the three-dimensional structure of a protein is completely determined by it’s
amino acid sequence has been known for the past 50 years. In this time several approaches to
mapping structure from sequence have had some success, most notably when using data-based
techniques. However, the accuracy of results from protein structure prediction experiments re-
main limited. Currently, homologous proteins play a leading role in protein structure prediction
but this approach is likely to be overturned by the newly formed conjecture that protein folds
are constrained in local sequence-structure space. Using the three-dimensional coordinates of
all heavy atoms from 30 protein structures within the PDB, this project aims to detect configura-
tional motifs composed of parts of amino acid residues, which are spatially compact but distant
in sequence.

A database of compact structural configurations is compiled using the statistical package R.
These atomic configurations are investigated by performing hierarchical agglomerative clus-
tering using both complete and Ward’s linkage. The results are masked by the overwhelming
influence of a peptide bond, resulting in a constraint, stating that configurations must contain
atoms from residues distant in sequence, being applied. The results from cluster analysis on the
new dataset are much more promising, with two configurational motifs being identified. The
first of these motifs is explained by two distant cysteine residues forming a disulphide bond,
which brings the residues into spatial proximity. The second motif is accounted for by the pres-
ence of salt bridges within the protein structures. Multiple clusters are shown to contain this
motif, which is shown to have an equal shape for all clusters the motif appears in.

Although these results are already known in the field of bioinformatics, the conclusions drawn
here confirm the validity and effectiveness of the methodology. Further work is suggested to
build on the approach used here, identifying scenarios in which the methodology requires adap-
tation. It is hoped that by implementing these changes, systematic patterns representing new
discoveries will become visible. These motifs could then be used as ‘building-blocks’ to predict
the structure of a given protein.
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Chapter 1

Introduction

1.1 Overview

The so-called ‘second central dogma’ of molecular biology states that the three-dimensional
structure of a protein is completely determined by it’s amino acid sequence (Fasnacht, 2002).
This hypothesis originated from experiments carried out by Christian Anfinsen back in the
1960s, who showed that protein structure is dictated by both its sequence and its environment,
without the obligatory role of extrinsic factors (Tramontano, 2005).

Moult (1999) defines protein structure prediction to be ‘all methods of modeling protein
structure from sequence information’. All proteins contain a flexible polypeptide backbone
which can adopt an infinite number of spatial configurations (Tang ef al., 2005). This large
degree of structural freedom, combined with complicated interactions between residues both
proximal and distant in sequence, heightens the complexity of modeling the three-dimensional
structure of proteins. Determining protein structure from the amino acid sequence is acknowl-
edged as one of the biggest challenges in the field of bioinformatics. It is hoped that the ex-

ploratory analysis undertaken in this project will give insight into this problem.

A multitude of factors, including the increasing size of sequence and structural databases,
technological advances in computational power and a deeper understanding of the principles
of protein structure, have resulted in significant progress being made. However, the difference
between the number of known protein sequences and the number of experimentally determined
structures is increasing rapidly, meaning that a solution to this problem still eludes bioinformati-
cians. This reflects a combination of factors, including the relative ease of identifying protein
sequences, contrasted by the monumental cost and time requirements related to determining
three-dimensional structures.

At present, research demonstrates limited ability to predict protein structure from local se-
quence information. To improve the accuracy of predictions, a better understanding of the in-
teractions between elements of secondary structure, which are inherently non-local is needed.
These interactions create small substructures, known as motifs (Gu & Bourne, 2009). The main

aim of this project is not to simply rediscover recurring structural patterns or motifs which have



already been discovered, such as a-helices and (3-sheets, but to instead identify more subtle
motifs, which may not necessarily be a function of a subsequence. The work involves a large
proportion of exploratory research, beginning with the compilation of a database of compact
structural configurations of heavy atoms, such as carbon, oxygen, nitrogen and sulphur. The
size of the database is restricted by computational power, a clear limitation of using a database
approach. Despite this restriction, it is hoped that any patterns discovered might contribute to
the understanding of the principles of protein folding and hence lead to an improved accuracy
in protein structure prediction.

The next part of this chapter recognises the biological background required by the reader to
gain a better understanding of the task at hand. The remainder of the chapter adopts a more sta-
tistical approach to the problem. Chapter 2 discusses the methodology used in constructing the
database, as well as the programming requirements for this problem, along with a brief overview
of how the original data was obtained. The results from the cluster analysis are shown in Chapter
3 together with results from principal coordinate analysis and statistical shape analysis. These
results are discussed in more detail and interpreted fully in the following chapter. Chapter 4 also
discusses the limitations of the procedures used and identifies scenarios for which the methodol-
ogy becomes unsatisfactory. Chapter 5 summarises the main conclusions drawn from the project

and also presents potential future work for this problem.

1.2 Biological background

1.2.1 Biochemistry review

Proteins are composed of polypeptide chains of amino acid residues (Branden & Tooze, 1999).
In total there are 20 amino acids, all of which have a central carbon atom, sometimes referred
to as the backbone, or alpha carbon. A hydrogen atom, amino group and carboxyl group are
all attached to the backbone carbon. Also joined to the backbone carbon is a side-chain which
determines the type of amino acid present (Lesk, 2000). It is important to note that the carboxyl
group contains a carbon frequently referred to as the carbonyl carbon. Whilst all amino acids
contain the alpha and carbonyl carbon, most contain further carbon atoms, for example, a lysine
residue contains six carbon atoms (Figure 1.1)!. The carbon atom which is attached to the alpha
carbon but is not the carbonyl carbon is known as the beta carbon. The carbon attached to this
is the gamma carbon, with subsequent carbon atoms named with chronological Greek alphabet

descriptions.

1.2.2 Protein structure

The sequence of amino acids is known as the primary structure and is unique for that particular

protein (Figure 1.2)2. The secondary structure refers to local folding of the polypeptide chain,

"http://en.wikipedia.org/wiki/File:Lysine_fisher_struct_num.png
Zhttp://barleyworld.org/css430_09/lecture%209-09/figure-09-03.jpg



Figure 1.1: Lysine residue with labeled carbon atoms.

such as in a-helices and 3-sheets. The tertiary structure is the three-dimensional structure of
the protein, showing the arrangement of the secondary structures with respect to one another
(Branden & Tooze, 1999) (Figure 1.3). The three-dimensional coordinates of every atom in
each amino acid residue in a large number of protein structures are required to detect for con-
figurational motifs composed of parts of amino acid residues, which are spatially compact but

sequentially dispersed.
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Figure 1.2: Primary and secondary structure of a protein.
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Figure 1.3: Tertiary structure of a protein.

1.2.3 Bonds and interactions

A polypeptide chain can place any possible set of residues in proximity (Niggemanna & Steipe,
2000). The interactions of the side and main chains determine the energy of the conformation
and the true folding pattern of the chain is the conformation which produces a set of interactions
that is significantly favourable (Branden & Tooze, 1999). For proteins to function, a stable
configuration is required. Interactions between different residues within the protein contribute
to its stability. These interactions can be formed between residues close in sequence or residues
which are distant from one another in linear sequence but brought into spatial proximity due to
folding of the protein Branden & Tooze (1999). Intuitively, interactions between residues distant
in the linear sequence add to the complexity of predicting the three-dimensional structure.

Interactions between residues include peptide bonds, electrostatic interactions, disulphide
bonds, hydrogen bonds, salt bridges and van-der-Waals interactions, although this is not an
exhaustive list (Gu & Bourne, 2009). The four main types of bonding required for the interpre-
tation of results are peptide bonds, disulphide bonds, hydrogen bonds and salt bridges (Figures
1.4-1.7)3*. Peptide bonds essentially hold the polypeptide chain together, joining the carboxyl
group of one amino acid with the amino group of the adjacent amino acid (Lesk, 2000). How-
ever, these bonds do not contribute to the stabilisation of the conformation as heavily as other
interactions (Gu & Bourne, 2009). Ramachandran & Sasisekharan (1968) state that the majority
of peptide bonds are found to be in frans-conformation, where the dihedral angle is defined to
be 180°, giving the bond a typically rigid structure. MacArthur & Thornton (1991) and Tramon-
tano (2005) point out that the exception to this rule occurs most visibly in proline residues, in
which approximately 5% of residues are found to be in cis-transformation, where the dihedral
angle is very close to 0°.

Branden & Tooze (1999) remark that disulphide bonds are only present in proteins which
contain sulphur atoms and are restricted to extracellular proteins. Despite these restrictions they

are found quite frequently in the Protein Data Bank >(PDB). Disulphide bridges allow different

*http://xray.bme.uu.se/~kurs/BiostrukfunkX2/practicals/practical _1/figs
“http://www.biog1105-1106.0org/demos/105/unit1/
>http://www.rcsb.org/pdb/
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parts of the polypeptide chain to be covalently bound and as a consequence are understood
to help stabilise the three-dimensional structure of a protein (Schulze-Kremer, 1996). This
stabilisation is believed to be accomplished by either linking two polypeptide chains, or by
stabilising the folding of a single chain. Disulphide bridges allow two cysteine residues to be
sequentially dispersed but adjacent in three-dimensional space, creating a configurational motif.
This is extremely useful as it allows the methodology used here to be informally tested.

Hydrogen bonds play a fundamental role in the secondary structure of proteins, forming
between backbone oxygen atoms and amide hydrogen atoms. The bond occurs when two elec-
tronegative atoms interact with the same hydrogen. This hydrogen atom is covalently bonded
to one of the atoms, known as the donor, and interacts electrostatically with the other atom,
known as the acceptor (Lodish et al., 2007). The well known secondary structures, a-helices
and (3-sheets can be formed depending on the spacing of the amino acid residues involved in the
hydrogen bond (Figure 1.2).

Salt bridges describe hydrogen bonds formed by the interaction between two charged residues



(Lesk, 2000). There are two positively charged (arginine and lysine) and two negatively charged
amino acids (asparatic acid and glutamic acid), thus salt bridges can form between four differ-
ent combinations of amino acid residues.

To summarise, interactions between atoms influence the folding of a protein. Interactions
can occur between residues close in sequence or between sequentially distant residues. Recent
work has been shaped by the belief that a newly created polypeptide may form local folds in
parts before completion of the folding process Tang et al. (2005). As a result of this conjecture,
attempting to observe small structural motifs appears to be the next step in protein structure
prediction. These small configurational motifs could then be viewed as “building-blocks” which
can be pieced together in order to predict the whole three-dimensional structure of a given

protein.

1.3 Statistical background

It is important to note that specific amino acid residues occur in differing frequencies in different
proteins. Moreover, different types of atoms are present in different amino acids; for example,
sulphur atoms only occur in two out of the 20 amino acids, namely cysteine and methionine,
emphasising the need for the protein structures used in the database to be representative of
protein structures as a whole. Ulmschneider & Sansom (2001) show that the frequency of amino
acid varies depending on what type of secondary structure the atom is in, making statistical
analysis more challenging.

Protein sequences are strongly autocorrelated, for example, if one residue is in a helix,
then the next one is also likely to be in the same helix, adding to the complexity of statistical
analysis. Interestingly, despite helices and sheets being regular secondary structure elements, a
method of assigning these structures from atom coordinates does not exist. All of these factors
emphasise the huge challenge in protein structure prediction. There are many ways to tackle
this particular problem but, intuitively, methods involving exploratory statistical analysis appear

to be a sensible starting point. The next part of this chapter addresses the techniques used here.

1.3.1 Cluster analysis

Cluster analysis is the main statistical tool used to detect configurational motifs in protein struc-
tures. Clustering techniques are of course exploratory and are thus used in conjunction with
other statistical methods in order to further analyse any results obtained. Unlike many other sta-
tistical procedures, cluster analysis methods are typically used for exploratory research when no
a priori hypotheses are known; a technique ideal for this type of project. Unsupervised learning
methods, such as cluster analysis, are clearly appropriate here because of the exploratory nature
of the work, but this does not guarantee definite clustering solutions. Clustering methods depend
on many sources of human judgement, such as the type of distance measure used to calculate the

dissimilarity between objects, as well as the type of clustering algorithm used. Results can be



subjective and, as expected, there are advantages and disadvantages of each method. Therefore,
serious justification and validation is required for each step of the clustering procedure.

To briefly summarise, cluster analysis is essentially concerned with identifying any ‘natu-
ral groupings’ in a set of objects. Some clustering techniques work well on certain types of
data but not on others. Everitt & Dunn (2001) remark that the method used can make implicit
assumptions about the structure present in the sample. If these assumptions do not hold, then
the clustering method itself may impose a structure on the data set, rather than find a natural
clustering of the observations, if of course there is one, posing the question of whether or not

natural groupings of the data actually exist.

1.3.2 Hierarchical agglomerative clustering

As expected, exploratory analysis of finding structurally equivalent sets of motifs begins by
implementing hierarchical agglomerative methods. These techniques are ideal because they
require no initial knowledge about the clustering solution, such as the number of clusters present
in the dataset. Since no prior knowledge concerning either the number or the size of possible
structural motifs is known, this technique is clearly useful for the initial phase of research.

There are of course several drawbacks to using such methods; Kaufman & Rousseeuw
(1990) state that the key disadvantage of using these techniques is that “a hierarchical method
suffers from the defect that it can never repair what was done in previous steps”. However,
if configurational motifs are distinct from one another, this potential problem becomes negli-
gible. The major difficulty of this particular technique lies in the timing of the termination of
the clustering algorithm. Usually the iterations are run up to a threshold point, decided by the
investigator in order to identify the ‘optimal’ number of clusters. This is achieved by cutting the
dendrogram at a specific height, sometimes known as the best cut and Everitt, Landau & Leese
(2001) note that this is indicated by large changes in fusion levels. If increases in mean internal
distance are small then this suggests that merging clusters are similar to one another; however
a noticeable jump indicates that dissimilar clusters are merging and the clustering algorithm
should be stopped prior to this agglomeration. More formal methods are reviewed by Milligan
& Cooper (1985).

Hierarchical clustering algorithms can differ in relation to the type of inter-group proximity
measure used. This measure defines the distance between two clusters and different measures
will subsequently give rise to different clustering solutions. The clustering methods considered
here are complete linkage and Ward’s method. The former defines the distance between clusters
A and B as the maximum distance between one element of A and one element of B. Ward
(1963), on the other hand, introduced a method which defines the distance between clusters A
and B by the increase in sum of squares within clusters, after fusion of the two clusters. The
main goal at each stage of the clustering process is to minimise the increase in the total within-
cluster error sum of squares. Everitt, Landau & Leese (2001) remark that that this can be a

highly efficient method which tends to find small sized, spherical clusters.



1.3.3 Principal coordinate analysis

Principal coordinate analysis (PCoA) is a type of scaling procedure, commonly referred to as
classical scaling. The main objective of PCoA is to produce a map of the objects in a small
number of dimensions. This attribute of dimension reduction makes comparisons between ob-
jects clearer, especially when the original dataset is of high dimensionality Chatfield & Collins
(1980). It is essentially a method of graphical display, plotting objects as points against princi-
pal coordinate axes and can prove extremely useful for examining results of a cluster analysis;

a feature which complements the exploratory statistical analysis carried out in this project.

Recall that the atom coordinates have been experimentally determined in three-dimensional
space. Since it is reasonably difficult to compare these configurations visually, it would be ideal
to reduce the number of dimensions from three to two, allowing for easier comparisons between

configurations.

Not to be confused with principal coordinate analysis, principal component analysis (PCA)
is a variable-directed technique, where the main objective is to replace the original variables in
the dataset by a smaller number of underlying variables, thereby reducing the dimensionality of
the dataset. The problem in using PCA directly relates to the arbitrariness of the x, y, and z axis.
The atoms could undergo similarity transformations, such as rotation, reflection and translation,
and yet the distance between the atoms would remain the same, implying that the axes have
no real intrinsic meaning. PCoA, on the other hand, makes use of the distance between pairs
of points rather than the actual coordinates. Therefore, it is applied here as a useful tool for

visualising results from a cluster analysis.

Chatfield & Collins (1980) note that given a set of Euclidean distances, no unique repre-
sentation of the points exist since distance preserving transformations do not affect the solution.
Hence the points are only defined up to location, reflection and rotation, meaning that the loca-

tion and orientation of the configuration cannot be directly determined.

Suppose that the Euclidean distances, d,s, between a set of objects, are contained in an
n X n matrix, D say. The coordinates of the configuration can be estimated, by first introducing

a matrix B, where the (7, s)th element of B is given by

p
bre = > Tpilisi, (1.1)
=1

and then by factorising it to be of the form B = X X7, where X is the original data matrix
Chatfield & Collins (1980). Let d?,= squared Euclidean distance between points 7 and s. Then



=1
p p p
= Z($M xm) + Z($sz - l’sz) -2 Z(l'm - xsz)
i=1 i=1 i=1
= brr + bss - Qbrs- (12)

Equation (1.2) can then be inverted to find the elements of B in terms of the {d%,}. A
location constraint must be applied first though to obtain a unique solution. This constraint
usually involves centering the data, i.e setting > " z,; = O forall ¢ = 1,...,p. Combining
these constraints with equation (1.1) implies that the rows and columns of B sum to zero. Now,

summing equation (1.2) over r yields

idzs == ibrr +ibss - 2ibrs
r=1 r=1 r=1 r=1

= T+ nbss, (1.3)

since the third term vanishes due to summing over a centered variable, and where T' = Z?:l brr.

Similarly, summing over s and 7 and s together gives

i dzs = nby +T, (1.4)
zn: zn: d?, = onT. (1.5)
r=1s=1

Setting A = —fd2 means that B can be written in the form B = HAH, where H is the
standard n X n centering matrix, i.e. H = [,,— % lnlz. B is symmetric and positive semi-definite

and thus can be written in terms of its spectral decomposition

B =TAI7, (1.6)

where A = diag(\1,...,\,) denotes the ordered eigenvalues of B with corresponding unit
eigenvectors I' = [y(1), ..., Y(n)]-

If D is formed from an n x ¢ matrix of full rank, then B has rank ¢ (¢ < n) and



Ag+1 = ... = Ay = 0 (Everitt, 2005). Putting this into equation (1.6) means that B can be

rewritten as

B=TAMIT,

where A; = diag(Aq,. .., \q) with corresponding unit eigenvectors I'y = [’y(l), . ,'y(q)]. The

coordinate values can be recovered by setting X = FlAlé . A k-dimensional principal coor-
dinates representation is then achieved by plotting the coordinates with respect to the first &
principal coordinates, giving the best fitting k-dimensional representation of the objects.

Jeffers (1992) points out that there is no simple interpretation for the eigenvalues obtained.
The first principal coordinate simply maximises the total squared distance between the objects,
whilst the second maximises the squared distance along an axis orthogonal to the first. Inter-
preting axes is even more complex, and is thus more complicated than in PCA. However, a
graphical representation of the configurations in two dimensions should give a helpful insight
into any recurring structural motifs observed from the results of cluster analysis.

Chatfield & Collins (1980) note that despite making little use of an underlying stochastic
model, principle coordinate analysis and cluster analysis are both techniques used to give an ini-
tial summary of the data, from which hypotheses can be generated and then tested in a statistical

setting.

1.3.4 Statistical shape analysis

Recall that proteins can be expressed as a sequence of amino acids which are made up of dif-
ferent atoms. Representing each atom as a single point allows statistical shape analysis to be
applied to each configuration of atoms. Shape consists of those properties of a geometric object
that are invariant under similarity transformations, i.e. under translation, rotation and scaling.
Configurational motifs which have been clustered together should have a similar shape to one
another since the distance between corresponding atoms in different configurations grouped in
the same cluster should be roughly equal. A recurring structural motif will, therefore, have the
same shape regardless of the three-dimensional coordinates of the index atom or the rotation
of the configuration about this index atom. To summarise, the shape of the configuration is
regarded as its fundamental property, whereas the registration parameters, such as location, ori-
entation and to some extent size, are merely artefacts of the observation process. It is of course
important to consider the possibility that there could be recurring structural motifs which have

the same shape but are of varying size. Each configuration can be represented by a k X p matrix,

X=1...0, 1.7

of k landmarks in RP, where the jth row of X, denoted by X]T, 7 = 1,...,k, represents the

10



coordinates in R” of the jth landmark. Note that in (1.7), X; is a column vector. Since the atoms

are determined in three-dimensional space, p = 3 here.

Bookstein coordinates

One approach could be to construct Bookstein coordinates (Bookstein, 1986) for each config-
uration and perform statistical analysis on these coordinates. Dryden & Mardia (1998) point
out that Bookstein coordinates can give a basic overview of the shape of a set of configurations
since interpretation of the shape coordinates is simple in the majority of cases. Another advan-
tage of Bookstein coordinates is that graphical displays are relatively easy to produce and can be
carried out using standard computer packages. However, there are some undesirable features of
using these coordinates. Not only are Bookstein coordinates inappropriate for non-concentrated
shapes but they are also inadvisable when two landmarks are nearly coincident. Moreover, the
choice of baseline is an arbitrary one and since different baseline landmarks give different re-
sults, this arbitrary choice makes Bookstein coordinates somewhat unsatisfactory. Dryden &
Mardia (1998) also note that registering landmarks with respect to a common edge can induce

correlations in the data, hindering interpretation of shape coordinates.

Procrustes tangent coordinates

A more fitting approach is to use Procrustes tangent coordinates (Dryden & Mardia, 1998). In
this coordinate system, configurations are registered with respect to one another, rather than with
respect to a common baseline. Procrustes analysis is subdivided into 2 settings - ordinary (OPA)
and generalised (GPA), both of which exist in 2 forms - partial and full. The aim is to create
an “average” shape using one of the settings and then represent configurations as “residuals”
about this mean shape. Three different Procrustes distances are available, namely full, partial
and angular; however for concentrated data there is minimal difference between each distance
and in fact it can be shown that the three distance measures are asymptotically equivalent for
concentrated configurations (Dryden & Mardia, 1998).

To summarise, the basic object of interest is the shape of the configuration, represented in
Procrustes tangent coordinates about a mean shape, [t say, as a 3k-dimensional vector. The
mean shape, i, is usually taken to be the GPA estimate of mean shape for the combined dataset,
although it can be chosen to be the GPA estimate of mean shape of either sets of configurations,

X orY, say, where X and Y are k x p X n, and k X p x n, arrays, respectively. The Procrustes
() (

tangent vectors, w;”’,7 = 1,...,n,; and Wz»y),’i = 1,...,ny, are then calculated for both sets
of configurations, where each w; is a 3k-dimensional vector. Standard multivariate analysis can
then be performed in this linear space in order to perform tests comparing the shapes of sets of

configurations.
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Hotelling’s 77 test

Two sample comparisons can be carried out to compare two sets of configurations using the
two-sample Hotelling’s 72 test. This test is used primarily to test the null hypothesis, Hy: the
two sets of configurations have equal mean shapes, measuring the distance in M space between
the mean shapes in dimensionless units. The test can also be used to gain further insight into
differences between the two groups should the null hypothesis be rejected. The test is essentially

an extension of the standard #-test into multidimensional space.

More formally, let [1,] and [x,] denote the mean shapes of two groups of configurations.

The two hypotheses
Ho : [pe] = [py] vs. Hu : [pa] # [1y],

can be tested using Hotelling’s 72 test in Procrustes tangent space. Let

W NN T), i=1,...,n, andw ~ N(&,3), i=1,...,n,,
(z) )

where the w;”” and w;

are mutually independent and the covariance matrices are assumed to
be the same. Before Hotelling’s 72 test statistic can be calculated, the mean vector of each

() (y)

group is required. This will be denoted by wg.e and weye for the two sets of configurations. The

difference between the two means is simply

a=wit) — it

where d is a 3k-dimensional vector. Finally, a pooled sample covariance matrix, S, is required.

Moore-Penrose generalised inverse

The tangent coordinates cannot incorporate changes in either location, orientation or scaling of
i1, and therefore .S is singular since it has 7 zero eigenvalues (3 for location, 3 for orientation
and 1 for scaling). As a result of this S is not invertible; however, a Moore-Penrose generalised

inverse S~ exists, where

3k—T7
ST=) ii'ge, (1.8)
Jj=1

and g; is the jth column of GG, where the spectral decomposition of .S is GLGT (Penrose, 1955).

Note that L is a diagonal matrix with ordered eigenvalues along the diagonal and therefore the

last 7 elements will all be equal to zero. The squared Mahalanobis distance between wgf,)e and

(v)

Wee 1S

D2 = (with — wiz)) 5™ (win —wi ). (19

e

where the Moore-Penrose generalised inverse, S~ is defined as in equation (1.8). Hotelling’s

12



T? test statistic can then be calculated using the squared Mahalanobs distance, D?, as defined

in equation (1.9), and the following formula

1 1\
T2=(+) D*  ~T%*3Bk—17,n, +ny,—2).

Ng Ny

Using the fact that %TQ (p,q) = F(p,q—p+1), a p-value can be calculated to either accept
or reject the null hypothesis. Note that under Hy : &, = &, the test statistic is

NgNy (Mg +ny — M — 1)
(ng + ny)(ng +ny — 2)M

2
D* ~ FMng+ny—M—1,

where M is the dimension of the shape space. Since each atom is determined in three-dimensional
space the shape space will have dimension 3k — 7, where k is the number of atoms in each con-

figuration. The null hypothesis is rejected for large values of F'.

1.4 Summary

The three-dimensional structure of a protein is dictated by its amino acid sequence. Deter-
mining the structure of a given protein can provide important information about the function
of the protein. Hence, there is an obvious link between a protein’s amino acid sequence and
it’s function, emphasising the importance of both awareness and understanding of the three-
dimensional structures of proteins. The study of protein structure prediction, i.e. predicting the
three-dimensional structure of a protein given its amino acid sequence, is a colossal challenge
but is receiving increasing levels of attention, resulting in a larger number structures known

today.

1.4.1 Recent work

Recent work in this field includes a number of ad hoc data-based approaches, which have had
some limited success in protein structure prediction, as well as ab initio structure prediction
methods; an area described by Moult (1999) as the “Holy Grail of the protein modeling field”.
Ab initio techniques are designed to model protein structures without direct knowledge of ex-
perimentally determined structures. Despite this idealistic approach, progress has been limited
with prediction methods so far proving elusive. If successful, these methods will provide a test
of current understanding of the principles of protein structure. Moreover, ab initio techniques
will be needed to model the differences between structures even when databases are present,
highlighting the significance of such methods.

Fasnacht (2002) introduces a method for automatically finding structural motifs in proteins.
The work mainly focuses on a special case of secondary structure interaction called coupled he-

lical motifs, which consist of two interacting helices. However, this method can be applied more
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generally to any type of structure. Based on hierarchical agglomerative clustering, the method is
shown to rediscover important features of the known structural motif using the root-mean-square
(rms) distance between atoms as a distant metric to compare pairs of helix couples. The rms
distance between a pair of structures, ¢ and j say, involves the sum of the differences in corre-

sponding atoms and is defined as

N ]2
dij:min\/ZkIHr% rill® (1.10)

where r; j is the position vector of the kth atom in the 7th structure. It is viewed as a standard

measure of structural distance between coordinate sets and can be used to compare both the
complete three-dimensional structure of a protein and also any subset of this structure, such as
a configurational motif. This distance measure could be used to identify configurational motifs
when new discoveries are made.

Qian & Sejnowski (1988) suggested that the best method of predicting the structure of an
unknown protein was to observe the structure of a homologous protein. Not only are very
few structures currently known, the set of solved structures could potentially be biased towards
particular types of protein, meaning that some proteins may not have homologous proteins with
known structures, rendering this method insufficient.

Currently it seems that the best approach is to try and identify small configurational motifs,
since interactions between residues in proteins can occur between sequential residues as well
as residues distant in sequence. As a consequence, these structural motifs may not necessarily
contain residues adjacent in linear sequence. If prominent, these recurring patterns could support
current understanding of the principles involved in protein folding, and therefore improve the
accuracy of protein structure prediction. Interestingly, Bystroff et al (1999) point out that if there
is a finite number of unique local structural motifs contained within all proteins, then multiple
sequence alignments of protein sequences should also exhibit a finite number of patterns of
sequence variation.

Sternberg (1996) raises the interesting point that protein structures are more highly con-
served than their sequences. During evolution, insertions and deletions occur predominantly
in loop regions, the areas between secondary structures, therefore altering the sequence of the
protein but not the folding process, resulting in the protein structure remaining unchanged. This
partially explains why a large proportion of the experimentally determined structures in the PDB

are very similar to each other.

Limited number of protein folds

As the number of determined protein structures increases, the number of observed folds in-
creases. Thornton (2001) notes that in 2001 however, only 5% of all newly determined struc-
tures adopted a novel fold, suggesting that there could be a relatively small number of protein

folds from which all proteins have evolved. Chothia (1993) suggests that there could possibly
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be fewer than 1000 folds in total, although this figure remains highly questionable. Xu et al.
(2007) remark that both theoretical and statistical studies (Murzin et al., 1995), (Brenner et al.,
1996) and (Wang, 1996) appear to suggest that the number of unique structural folds in nature
is most likely to be somewhere in the region of a few hundred to a few thousand. For proteins
to function a stable conformation is required, restricting the number of allowed amino acid se-
quences. However, it may be case that some stable folds are not present in nature, since the
folds that exist today are the result of an evolutionary process in which not all possible sequence
combinations have been attempted.

Currently only around a few hundred unique protein folds are known. It is hoped that if there
is indeed a limited number of protein folds, then an experimental determination of each type of
fold can be produced. Methods which can identify fold types from sequences can consequently
be implemented, enabling the prediction of the three-dimensional structure of a protein from

sequence alone.

Review

Overall, it is hoped that identifying recurring structural motifs will lead to an improved under-
standing of the principles of protein folding in three-dimensional space. The methods imple-
mented here are inherently exploratory and are used primarily to help reveal any systematic
patterns in the atomic configurations studied. These patterns can then be further investigated
with the long term goal of statistically analysing all identifiable patterns in as many protein
structures as possible. Obviously some observed ‘patterns’ may occur purely by chance and
as a result do not actually represent a link between sequence and structure. Hence, the major
objective of this work is to eventually test the significance of any systematic patterns in the hope

of developing an understanding of this link between primary and tertiary structure.
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Chapter 2

Methodology

This chapter briefly summarises the methods used in this project with reference to the construc-
tion of the database and the identification of recurring structural motifs from this database. Also
included is an overview of how protein structures are determined and the accessibility and cred-
ibility of structures found online. Several limitations relating to the construction of the database
are also considered here. The last part of the chapter describes the compilation of the database,

stating the distance measures and metrics used when comparing individual configurations.

21 PDB

The Protein Data Bank (PDB) is a repository for the three-dimensional structural data of tens of
thousands of protein structures. It is perceived as a primary data bank, from which secondary
databases can be constructed in the interest of research. Governed by the Worldwide Protein
Data Bank (wwPDB) to help maintain the credibility and quality of the information stored in
the data bank, the PDB is vital for the integrity of this project.

2.1.1 X-ray crystallography

For each protein structure within the database the three-dimensional coordinates are given for
each atom and this information is used as the main driving-force in detecting recurring struc-
tural patterns. All of the information in the PDB archive has been determined experimentally,
using either x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. NMR
is restricted in its use on small protein molecules and therefore protein structures determined
by this particular method are not considered here. Hence, for this project only protein struc-
tures determined by x-ray crystallography shall be considered. This method involves directing a
beam of x-rays onto a regular, repeating array of identical molecules arranged in a crystal. The
interaction of the x-rays with the electrons in the molecules produces an electron-density map,

from which the structure of the molecule can be obtained (Branden & Tooze, 1999).
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Ideally all possible protein structures within the PDB would be used to compile the database;
however, using even just a reasonable number of protein structures would be deemed computa-
tionally expensive. Instead, several protein structures shall be chosen at random from the data
bank. Before the protein structures are selected to use in the database, a constraint on the resolu-
tion of the protein structure must be applied. X-ray structures are determined at different levels
of resolution, measured in Angstroms (A). The smaller the number, the higher the resolution and
the greater the amount of detail that can be seen. To give a brief summary, a protein structure
is considered to have a low resolution if the resolution is greater than or equal to SA, medium
if around 3A, and high if the resolution is less than this value. Since a high resolution implies
that most atomic positions within the structure can be determined to a high degree of accuracy,
it will be of greater benefit to select protein structures which have a high resolution to use in the
database. Therefore, to begin with only protein structures with of a resolution < 2A shall

be considered.

2.1.2 Drawbacks

There are several limitations regarding the process used in compiling the database. Firstly the
database relies on the quality of the information contained in the PDB. Moreover, x-ray crys-
tallography requires well-ordered crystals to produce accurate results; however, these crystals
are difficult to grow due to the irregular nature of the protein molecules in question (Branden &
Tooze, 1999). Since some forms of protein molecules are easier to crystallise than others, the
set of solved structures is biased towards those proteins which are better suited to the conditions
required in x-ray crystallography. Branden & Tooze (1999) give one example relating to this
idea of suitability, stating that globular proteins are, in general, easier to crystallise than mem-
brane proteins. As a consequence of this, fewer membrane proteins are present in the PDB. The
limitations discussed above suggest that great care must be taken when compiling the database
of compact structural configurations and this should be taken into consideration when drawing
conclusions.

Protein structures in the PDB often contain hydrogen atoms, which are frequently unre-
ported or inaccurately recorded. Those structures in the PDB which report the coordinates of
hydrogen atoms often employ imputation methods for positioning hydrogen atoms, rather than
experimental determination, therefore increasing the error in the accuracy of the atomic coor-
dinates. As a result of these inconsistencies, hydrogen atoms shall be disregarded from the
database. It should be noted that approximately half of the atoms in a protein are hydrogen
molecules and thus by ignoring these, a large proportion of individual atoms in each observed
structure will be disregarded. However, due to such vast discrepancies in the reporting of hy-

drogen atoms, this appears to be the most appropriate way to progress with this project.
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2.2 Procedure

The protein structures, selected randomly from the PDB are stored as pdb files and read into R
with the assistance of the specially created bio3d package. An idealistic approach would be to
run in all possible protein structures from the PDB; nonetheless the computational requirements
increase exponentially as the number of configurations in the database increases. The limitation
of computational power can be overcome to some extent by addressing the number of calcula-
tions required to produce results of interest, allowing more protein structures to be incorporated

into the database.

2.2.1 Database compilation

The analysis begins with the compilation of a database of compact structural configurations of
heavy atoms, including carbon, nitrogen, oxygen and sulphur. Each compact configuration Cj,
say, will be centred on one atom from a PDB protein structure. This atom, k, will be referred
to as the index atom of the configuration. Interest lies in the m — 1 atoms closest to the index
atom in three-dimensional space, using the most appropriate value of m. The idea is that some
exploratory work is required to find a value of m large enough to ensure that the database is not
dominated by local sequence substructures, such as a-helix fragments, but small enough so that

recurring configurations of that size actually exist.

Calculating the Euclidean distance

For each configuration, Cj, the m — 1 atoms closest to atom k in three-dimensional space must

first be discovered. For a protein p containing n heavy atoms, the Euclidean distance between

the index atom k, and any atom ¢, 7 — 1, ..., n, can be calculated using
2 2 2
4 \/ (o = 20)" + (4 =) + (0 - 20, e
for all index atoms k& = 1...,n, where (:rgp ),ygp ), zi(p )) denotes the spatial coordinates of

the 7th atom of protein p.
This gives the Euclidean distance between each index atom and every other atom in the pro-

tein. However, only the closest m — 1 atoms to the index atom k are of interest, and hence the

spatial coordinates of the closest non-trivial atom can be denoted by (xgk), yék), Zék)) and the

second closest by (ﬂcék), yék), Z;gk)), and so on, until the mth closest atom is reached. More gen-

erally, the spatial coordinates of the jth closest non-trivial atom are labelled (a:yi)l, y](-lj_)l, zj(-]j_)l),

j=1...,m — 1. The spatial coordinates of the index atom are denoted by (mgk), ygk) , z%k)).

(k)
ij
1,...m, 5 =1,...m, of these m atoms for each configuration k. As in (2.1), the distances are

The database then contains the Euclidean distances, d;;’, between each pair (i,7), i =

calculated as follows
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diy) = \/ (" - x§k))2 + (o - y](-k))2 + (49 - z](’“))Q, 2.2)

where (xz(k) , yi(k), zl(k)) represents the spatial coordinates of the ith atom of configuration Cf.

Thus each configuration is represented by a symmetric m X m distance matrix with each cell
denoting the Euclidean distance between each of the m atoms. Trivially, the leading diagonal
elements will be zero and since the matrix is symmetric, only % distances are required.
The storage of distance matrices rather than the original three-dimensional atomic coordinates
is advantageous since it eliminates unimportant orientation information. For example, a set of
m atoms may produce the same distance matrix as a different set of m atoms but in another area
of the three-dimensional space or possibly at a different orientation about the index atom.

Each heavy atom for each protein structure will contribute one configuration towards the
database, resulting in an enormous database. As stated earlier, each configuration is an m x m
distance matrix. To make analysis universal, a standard ordering of the rows and columns of
each distance matrix has been implemented. The matrix will contain the index atom in the first
position, followed by the remaining m — 1 atoms positioned in order of their relative proximity
to the index atom, i.e. the atom nearest to the index atom is placed in the second position of the
matrix and so forth. This is achieved by using the specially created function named protein (see
A2.1)

According to Brocchieri & Karlin (2005), a protein of average length contains approxi-
mately 300 amino acid residues. Ignoring hydrogen atoms, each amino acid has between 5 and
15 heavy atoms and each of these atoms relates to a configuration Cy. This implies that, on
average, for each protein added to the database, around 3000 configurations are produced. This
is a very basic estimate since amino acids occur in differing frequencies, but it does give the
reader, who may be unfamiliar with the biological background, a rough idea of the size of the

database.

2.2.2 Dissimilarity measure

To compare two configurations, Cj, and Cj, a metric must first be formulated. An initial choice

is to define the metric as follows

m j—1

__ 2 (k) _ 40

j=2 i=1
(k)
ij

configurations, Cj, and C;. The implementation of the standard ordering of the columns and

2
m(m—1)

where d;.’ is defined as in (2.2) and Dy; is formally the dissimilarity between the two

rows justifies the choice of metric with the factor

representing the reciprocal of the total
number of distances summated.
Using (2.3), the dissimilarity between each configuration in the database can then be calcu-

lated and a dissimilarity matrix compiled with cluster analysis being performed on all config-
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urations. If recurring structural patterns exist within the database, then these structural motifs
will have very similar configurations, or distance matrices, and hence the dissimilarity between
two such configurations will be minimal. These configurations will then be grouped within the
same cluster with other configurations of a similar nature.

The cutree function in R can be used to observe the groupings of the configurations at dif-
ferent points along the clustering algorithm. If the dendrogram is cut too low and agglomerative
clustering techniques are applied say, then all configurations could be individual clusters, giving
the observer no information regarding the similarity of any of the configurations. On the other
hand, if the dendrogram is cut too high, then the majority of the configurations will all belong
to one large cluster. A brief visualisation of the dendrogram should give an idea of a sensible
range of cut-off points.

Once a potential clustering has been identified, the cluster membership of each individual
configuration is needed. The atoms within each configuration must then be identified (see A.2.2)
in order to observe any potentially recurring patterns within each cluster.

The initial metric in (2.3), used to compare two configurations, C and C}, can detect con-
figurational motifs of the same size and of approximately spherical shape. However, there is a
distinct possibility that commonly recurring structural motifs vary in shape and size, rendering
the search methodology unsatisfactory. One way of adapting the methodology is to create a
metric which allows for a proportion of the m atoms to be disregarded. The number of atoms
excluded from the distance measure can be dependent on the size of the differences between el-
ements dg-f) and dg),
how many atoms should be ignored.

relative to a critical value. A threshold value is thus required to determine

In some sense, similar to the principle of the bootstrap philosophy, this novel metric will
allow the data to ‘speak for itself’, choosing the most appropriate value of m. As a consequence
of this, a major advantage of this new metric is that the methodology is much less sensitive to

the choice of m. This adaptation to the methodology is further discussed in Chapters 4 & 5.
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Chapter 3
Data Analysis

In this chapter the results of the statistical exploratory data analysis are reported, concentrating
primarily on systematic patterns of interest. The methods used here include cluster analysis,
principal coordinate analysis and statistical shape analysis, as well as the implementation of a

chi-squared test of independence.

3.1 Hierarchical agglomerative clustering: original database

Hierarchical agglomerative clustering is performed on a total of 8,336 configurations from 5
protein structures, using both complete linkage (Figure 3.1) and Ward’s linkage (Figure 3.2).
Analysis begins by setting the number of atoms in each configuration equal to 10, i.e. m =
10. This means that each configuration contains the index atom and the 9 closest atoms to
this point in three-dimensional space. The metric used to calculate the dissimilarity between
two configurations is as in equation (2.3), which essentially calculates the average difference
between corresponding cells of the two m X m matrices.

The two cluster dendrograms (Figures 3.1-3.2) appear to be very different from one another;
the agglomerations of configurations when using complete linkage appear to occur at roughly
the same height, whereas when Ward’s linkage is considered the clusters appear to be far more
distinct. Figure (3.2) shows a large number of tight clusters, possibly indicating the presence
of configurational motifs. The dendrogram is cut at a height of 2 giving rise to 736 clusters.
Table 3.1 shows the 7 configurations found in cluster number 1. Each configuration contains
the atom number, element type, amino acid residue and residue number of each of the atoms
in the configuration, together with the PDB accession number of the protein containing the
atoms. It can be seen that the amino acids belonging to each configuration are almost exclusively
different from one another, indicating that there is no immediately obvious pattern. Moreover,
the residue numbers are sequential demonstrating that these configurations are proximal in both

three-dimensional space and in sequence.
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Interestingly, 6 out of the 7 configurations in this particular cluster have an index atom which
is an oxygen atom (O). This is always followed by a carbonyl carbon (C), a nitrogen atom
(N), and then by two alpha-carbon atoms (CA), indicating an (O-C-N-CA-CA) pattern. This
pattern clearly represents a peptide bond between two adjacent amino acids. Similar patterns
are observed in the remaining clusters (see Table A.1), suggesting that a constraint on the residue
numbers of each configuration could provide the key to a more ‘interesting’ cluster solution. It is
important to note that configurations from all 5 different protein structures appear in this cluster,
suggesting that this particular type of configuration is visible in all chosen structures.

Applying a constraint to the database ensures that each configuration contains a set of atoms
which are spatially compact but sequentially distant, i.e. the atoms in the configuration cannot
simply all come from the same amino acid residue or residues which are adjacent in linear
sequence. As a consequence of applying this constraint, a large proportion of configurations are
discarded. This eases the pressure on computational requirements and therefore allows for an

increase in the number of different protein structures used in the database.

Table 3.1: Configurations in cluster 1.

Atom number | Element | Amino acid | Residue number | PDB accession number

1 N ILE 16 3tpi

2 CA ILE 16 3tpi
5 CB ILE 16 3tpi
3 C ILE 16 3tpi
6 CGl ILE 16 3tpi
4 0] ILE 16 3tpi
9 N VAL 17 3tpi

8 CD1 ILE 16 3tpi
7 CG2 ILE 16 3tpi
10 CA VAL 17 3tpi
1169 0] MET 180 3tpi
1168 C MET 180 3tpi
1174 N PHE 181 3tpi
1167 CA MET 180 3tpi
1175 CA PHE 181 3tpi
1166 N MET 180 3tpi
1170 CB MET 180 3tpi
1178 CB PHE 181 3tpi
1148 0] THR 177 3tpi
1507 CE LYS 230 3tpi

Continued on next page
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Table 3.1 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
102 0] GLU 13 3paz
101 C GLU 13 3paz
108 N GLY 14 3paz
100 CA GLU 13 3paz
109 CA GLY 14 3paz
103 CB GLU 13 3paz
99 N GLU 13 3paz
890 NH2 ARG 114 3paz
110 C GLY 14 3paz
106 OEl GLU 13 3paz
621 0] LEU 81 laew
620 C LEU 81 laew
626 N PHE 82 laew
619 CA LEU 81 laew
627 CA PHE 82 laew
618 N LEU 81 laew
622 CB LEU 81 laew
628 C PHE 82 laew
124 CG ASN 21 laew
125 ODl1 ASN 21 laew
425 0] ARG 61 la7s
424 C ARG 61 la7s
433 N ARG 62 la7s
423 CA ARG 61 la7s
434 CA ARG 62 la7s
426 CB ARG 61 la7s
422 N ARG 61 la7s
435 C ARG 62 la7s
437 CB ARG 62 la7s
427 CG ARG 61 la7s
478 0] GLN 66 la7s
477 C GLN 66 la7s
484 N SER 67 la7s
476 CA GLN 66 la7s
485 CA SER 67 la7s
479 CB GLN 66 la7s

Continued on next page
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Table 3.1 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
475 N GLN 66 la7s
486 C SER 67 la7s
488 CB SER 67 la7s
480 CG GLN 66 la7s
1157 0] GLN 153 la7s
1156 C GLN 153 la7s
1163 N CYS 154 la7s
1155 CA GLN 153 la7s
1164 CA CYS 154 la7s
1158 CB GLN 153 la7s
1154 N GLN 153 la7s
1167 CB CYS 154 la7s
1165 C CYS 154 la7s
1481 CG PRO 200 la7s

3.2 Hierarchical agglomerative clustering: new database

Reading in 30 different protein structures, each selected at random from the PDB, gives rise to
54,972 configurations. A constraint is then introduced to these configurations, stating that one
of the first 5 atoms in each standard ordered matrix must have a difference in residue number
greater than two from any of the remaining 4 atoms in the top half of the configuration. After
applying the constraint the number of configurations is reduced to 4,579. Hierarchical agglom-
erative clustering of these configurations, again using complete linkage and Ward’s linkage, can
be viewed in the following dendrograms (Figures 3.3-3.4).

It should be noted that configurations, where the underlying feature of the set of atoms is
a peptide bond but a single atom from an amino acid residue distant in sequence has appeared
proximal to the index atom in three-dimensional space purely by chance, will still be included
in the clustering. However, these anomalies are easy to identify when comparing configurations
within a given cluster and hence are a negligible problem.

Cutting the dendrograms at a height of 2 generates 24 and 474 clusters for complete link-
age and Ward’s linkage respectively. All configurations have now had the constraint applied,
meaning that any structural motifs identified will contain amino acid residues which are distant

in sequence.
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The first thing to note is that there is a large difference in the number of clusters for each
clustering algorithm; far fewer clusters are observed when complete linkage (Figure 3.3) is used
when the dendrograms are cut at the same height. Fusions again appear to occur around the
same height making it difficult to differentiate between clusters and hence there appears to be
no explicit solution. On the other hand, Ward’s linkage (Figure 3.4) appears to be more bene-
ficial than complete linkage, since the algorithm groups the configurations clearly into distinct
clusters. To further explore these groupings in order to help identify configurational motifs, the
cluster membership of each configuration is observed. For the hierarchical agglomerative clus-
tering algorithm using Ward’s linkage, the number of configurations in each cluster ranges from
between 1 and 30, averaging just less than 10 configurations per cluster. The configurations
associated with the largest cluster appear to reveal no systematic patterns, indicating that this

particular cluster does not represent a specific structural motif.

Table 3.2: Configurations in cluster 17.

Atom number | Element | Amino acid | Residue number | PDB accession number

1521 SG CYS 232 3tpi
1520 CB CYS 232 3tpi
811 SG CYS 128 3tpi
1517 CA CYS 232 3tpi
810 CB CYS 128 3tpi
1518 C CYS 232 3tpi
1516 N CYS 232 3tpi
1522 N ASN 233 3tpi
1506 CD LYS 230 3tpi
807 CA CYS 128 3tpi
1932 SG CYS 38 3tpi
1931 CB CYS 38 3tpi
1740 SG CYS 14 3tpi
928 CA CYS 38 3tpi
1739 CB CYS 14 3tpi
1929 C CYS 38 3tpi
1930 0] CYS 38 3tpi
1927 N CYS 38 3tpi
1735 N CYS 14 3tpi
608 CD2 LEU 99 3tpi
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Motif one

However, some clusters do show signs of systematic patterns, such as the configurations grouped
in cluster 17. Table (3.2) displays the atoms involved in the first two configurations in this
cluster. The first seven atoms in both configurations belong to cysteine residues. Moreover,
both configurations have a sulphur atom as the index atom and a beta carbon as the closest
atom to the index atom in three-dimensional space. The 3rd, 4th, 5th and 6th positions in the
configurations contain another sulphur atom, an alpha carbon, a beta carbon and a carbonyl
carbon, respectively. Four of the atoms, those in the 1st, 2nd, 4th and 6th positions, all belong
to the same cysteine residue. Atoms in the 3rd and Sth positions are part of another cysteine
residue which is distant in sequence to the first residue. For example, in the first configuration
the 1st, 2nd, 4th and 6th atoms are found in residue number 232, whereas atoms in the 3rd
and 5th position are from residue number 128. Since residues are numbered in linear sequence
according to the backbone of the polypeptide chain, it is immediately apparent that these two
cysteine residues are non-local with respect to sequence.

This pattern is clearly visible for all remaining configurations within this cluster (see Ta-
ble A.2). Hence this particular cluster contains a group of configurations which represent a set
of atoms which are spatially compact but not adjacent in amino acid sequence. A similar pat-
tern is observed in cluster 99, although these two clusters do not merge until the dendrogram
reaches a height of over 300, i.e. the clusters do not merge until the final agglomeration of all

configurations in the clustering. The possible reason for this is discussed in Chapter 4.

3.2.1 Principal coordinate analysis: motif one

Recall that principle coordinate analysis provides a method for reducing the dimensionality of
a set of objects, allowing for easier comparison between objects which depend on multiple
variables. The first 6 atoms of each configuration from cluster 99 are plotted in two dimensions
(Figure 3.5). The points are defined up to rotation, reflection and location and hence distance
preserving similarity transformations can be applied to the configurations to allow observation
of any structural similarity. Each colour represents a different configuration within the cluster.
The lines between the points indicate the presence of covalent bonds joining the atoms together.
Recall that atoms 3 and 5 are from a different cysteine residue from the remaining atoms in the
plot. There appears to be a degree of similarity between each of the configurations; however, it
is difficult to determine the statistical significance of this similarity.

In order to apply shape analysis techniques it becomes a much simpler problem if only the
first 5 atoms of each configuration are considered. Figure (3.6) shows the PCoA coordinates
of the first 5 atoms from each configuration in cluster 17. The lines have now been uniformly
ordered to allow for a representation of the shape of each configuration and thus no longer
represent covalent bonds. The same method is applied to the configurations found in cluster 99
(Figure 3.7). It is interesting to note that one of the configurations in cluster 99 has a very similar

shape to the mean shape of the configurations found in cluster 17 when PCoA is applied. The
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Figure 3.5: PCoA of first 6 atoms of configurations in cluster 99.

mean shape of each set of configurations is shown in Figure (3.8). The main difference between
the two configurations appears to involve the interaction between the two cysteine residues.
There appears to be relatively little difference in the cysteine residue containing the 1st, 2nd and
4th atoms from each configuration. However, the difference lies in the cysteine residue which
is distant in linear sequence to this first residue but contributes the 3rd and 5th atoms of each
configuration. The distance between the two sulphur atoms (1st and 3rd atoms) is much greater
for the configurations in cluster 17. Also there is a large difference in the positioning of the 5th

atom relative to the 3rd atom between both mean shapes.

3.2.2 Hotelling’s T test: motif one

We can test whether the configurations in cluster 17 have a significantly different shape to the
configurations in cluster 99 using Hotelling’s T2 test. First, Procrustes tangent coordinates
are calculated for both sets of configurations about the GPA estimate of mean shape for the
combined dataset. Both the difference between the mean shapes and the covariance matrix of
all configurations from both clusters are calculated and then used to calculate Hotelling’s 72
test statistic.

The dimension of the shape space, M, is equal to 8. Each configuration consists of 5 atoms
in 3 dimensions giving rise to 15 dimensions. However, 3 are removed for location, 3 for orien-
tation and 1 for scaling, resulting in a shape space of 8 dimensions. There are 5 configurations

in each cluster, thus n, = 5 and n, = 5.
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A test statistic of T2 = 128.03 ~ T?(8,8) is obtained, with a p-value of 0.5003. Since
the p-value is much greater than 0.05, the null hypothesis, Hy: the two sets of configurations
have equal mean shapes, cannot be rejected. This is interesting because not only is a large test
statistic produced but the PCoA plots (Figures 3.6-3.8) appear to show a reasonable difference
in shape between the two sets of configurations. The sample sizes are both extremely small as
there are only 5 objects in each group. As a result of these small sample sizes, Hotelling’s 72
test is not very powerful.

Goodall’s F' test (Goodall, 1991) can also be used to test for a significant difference between
the two mean shapes. This test uses a diagonal covariance matrix, where the diagonal elements
are all equal and proportional to the identity matrix. Implementing Goodall’s F' test results in
the same conclusion as reached above, i.e. the null hypothesis is accepted.

Increasing the number of structures in the database directly increases the number of config-
urations available. By reading in four extra protein structures, n,, from above, increases from 5
to 9 configurations. With the number of configurations remaining the same in the other cluster,
i.e. ny, = 5, Hotelling’s 7" test statistic becomes 7% = 127.48 ~ T?(8,12). The p-value is now
0.0259, which is less than the critical threshold value of 0.05. The null hypothesis is rejected
and hence there is evidence to suggest that there is a statistically significant difference in mean

shapes between the two clusters of configurations.
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Figure 3.6: PCoA of configurations in cluster 17.
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Figure 3.7: PCoA of configurations in cluster 99.
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Figure 3.8: PCoA of mean configurations of cluster 17 (black) and cluster 99 (green).
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Table 3.3: Configurations in cluster 396.

Atom number | Element | Amino acid | Residue number | PDB accession number
1236 OD2 ASP 157 16gs
1234 CG ASP 157 16gs
1235 ODl1 ASP 157 16gs
1233 CB ASP 157 16gs
784 NH2 ARG 100 16gs
783 NH1 ARG 100 16gs
782 Ccz ARG 100 16gs
1231 C ASP 157 16gs
1230 CA ASP 157 16gs
1232 0] ASP 157 16gs
2163 OD2 ASP 42 1k3y
2161 CG ASP 42 1k3y
2162 ODl1 ASP 42 1k3y
2160 CB ASP 42 1k3y
3630 NH2 ARG 221 1k3y
3629 NH1 ARG 221 1k3y
3628 CczZ ARG 221 1k3y
2129 0] ALA 38 1k3y
2157 CA ASP 42 1k3y
2156 N ASP 42 1k3y

Motif two

Table (3.3) shows two of the configurations from cluster 396. The first four atoms in both
configurations are all from aspartic acid residues. Moreover, the type of element of each of the
heavy atoms is the same for corresponding positions in each cluster. For example, the first atom
is an oxygen, the second atom is a gamma carbon, and so on. The atom in the 5th position of
both configurations is a nitrogen from an arginine residue. This residue is clearly distant in linear
sequence from the aspartic acid residue seen in the first four positions of both configurations
since the residue numbers are very different from one another. The remaining configurations in
this cluster resemble a similar pattern, with one of configurations containing a lysine residue in
the 5th position instead of arginine. Hence, this cluster appears to show configurations which
are structurally compact but sequentially distant.

The whole database can then be searched to locate all configurations with this pattern. The

results obtained from this search can then be tested to see whether or not, after the constraint dis-
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cussed earlier is applied, the number of configurations with this pattern is significantly different
from the expected number of results, under the null model that the amino acid residue appearing
after 4 aspartic acid atoms is random. A chi-squared test of independence can be implemented

with the purpose of testing the significance of this observed pattern.

3.2.3 Chi-Squared test of independence: motif two

Setting one variable to be the amino acid residue in the 5th position of each configuration and
the other variable to be the first four atoms in each corresponding configuration, a chi-square test
of independence can be carried out on these results to formally test whether the two categorical
variables are independent of one another, i.e. test whether or not the atom in the 5th position
of each configuration depends significantly on the first four atoms. The idea is to show that the
amino acid residues arginine and lysine occur more frequently than expected given that four
aspartic acid atoms are observed in the first four positions of the configuration. The null and

alternative hypotheses are set out as follows

Hj =the amino acid residue appearing in the 5th position of the configuration is independent

of the atoms which appear before it,

H 4 = the two categorical variables are related.

Arginine | Lysine | Threonine | Other | Row total
4 Aspartic acid atoms 69 65 33 186 353
Any other combination 342 425 306 3153 4226
Column total 411 490 339 3339 4579

Table 3.4: x*-test of independence: observed frequencies.

Table (3.4) shows the observed frequencies of 8 different events for 4,579 configurations.
The column totals indicate the frequency of each amino acid occurring in the 5th position of a
configuration, where ‘other’ denotes the remaining 17 amino acids. The first row total corre-
sponds to the number of configurations where four atoms from aspartic acid residues are present
in the first four positions. The second row total accounts for any other sequence of amino acids

in the first four positions.

The expected frequencies, E;;, of each event can be calculated using the formula
b 00X, Oy
(] N s

where N denotes the total number of observed events, ¢ and r are the number of columns and

rows, respectively, in the contingency table. O;; denotes the sum of the observed frequencies
of all cells in row ¢ and Oy; denotes the sum of the observed frequencies of all cells in column
j. Table (3.5) shows the expected frequencies for each event. The cells which represent config-

urations which have four atoms from aspartic acid residues in the first four positions followed

37



by either an atom from a arginine or lysine residue have much larger values for the observed
frequencies compared to the expected frequencies. In fact, 69 configurations with atoms from
aspartic acid residues occupying the first four positions, followed by an atom from an arginine
residue, are observed, which is over double the expected frequency of this event (31.7). Thre-
onine is another amino acid which has a larger observed frequency than expected frequency;
however the difference in observed and expected frequency is not as great as seen with arginine
and lysine. On the other hand, the converse is true for the remaining 17 amino acids, with the
table indicating that there is a much larger expected frequency than observed frequency for this
particular event.

The opposite is true for any other combination of amino acids for all cells, although the
absolute differences between observed and expected frequencies appear to be much smaller

relative to the large expected frequencies.

Arginine | Lysine | Threonine | Other | Row total
4 Aspartic acid atoms 31.7 37.8 26.1 257.4 353
Any other combination | 379.3 452.2 312.9 3081.6 4226
Column total 411 490 339 3339 4579

Table 3.5: x*-test of independence: expected frequencies.

Table (3.6) shows the calculations required for the test statistic. The fourth column of the
table shows the sign of each contribution so that it can easily be seen whether the observed

frequencies are greater than, or less than, the expected frequencies of each cell.

Observed frequency | Expected frequency | (O — E)?/E | (O — E)/VE
69 31.7 44.0 6.6
65 37.8 19.6 4.4
33 26.1 1.8 1.3
186 257.4 19.8 -4.5
342 379.3 3.7 -1.9
425 452.2 1.6 -1.3
306 312.9 0.2 -0.4
3153 3081.6 1.7 1.3

Table 3.6: x*-test of independence: test statistic.

The test statistic is calculated as follows

where O;; denotes the observed frequency of cell (4, j) and E;; denotes the expected frequency
of cell (i, 7).
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Summing over the rows and columns gives

X’= = 440+196+18+1984+3.7+1.6+02+1.7
= 924.

The x2-test has (¢ — 1)(r — 1) = (4 — 1)(3 — 1) = 3 degrees of freedom and thus the
critical value of interest is x3(0.05) = 7.815. Since x%,, >> x3(0.05), the null hypothesis,
Hy: the amino acid residue appearing in the 5th position of the configuration is independent
of the atoms which appear before it, is rejected. The test shows that there is a statistically
significant association between the atom which appears in the 5th position of a configuration
and the atoms which appear in the first four positions. Clearly there are a greater number of
configurations with atoms from arginine and lysine residues in the 5th position than expected
when the first four atoms are all from aspartic acid residues. The possible reasoning behind this

large discrepancy is discussed in detail in Chapter 4.

Table 3.7: Configuration pattern in cluster 359.

Atom number | Element | Amino acid | Residue number | PDB accession number
777 CE LYS 107 2abh
778 NZ LYS 107 2abh
776 CD LYS 107 2abh
775 CG LYS 107 2abh
1149 OEl GLU 155 2abh
774 CB LYS 107 2abh
1150 OE2 GLU 155 2abh
1148 CD GLU 155 2abh
736 OD1 ASP 102 2abh
771 CA LYS 107 2abh

Another systematic pattern

Cluster 359 also represents a recurring pattern. Table (3.7) shows an example of one of the con-
figurations found in this cluster. The first four atoms, an epsilon carbon, nitrogen, delta carbon
and a gamma carbon, all come from the same lysine residue. An oxygen atom from a glutamic
acid residue, which is distant in linear sequence to the lysine residue, is situated in the 5th po-
sition. In total there are 9 configurations in cluster 359. Two of these configurations contain an

atom which is assigned the first position, i.e. the index atom, in one of the other configurations
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within this cluster, but in one of the remaining 9 positions. Hence only 7 structural motifs can be
considered as independent, since 2 of the configurations are essentially repetitions of the same
motif, differing only by the choice of index atom within the motif. Of these 7 configurations, 6
have the same pattern as seen in the table. The only difference in the remaining configuration is
that an oxygen atom from an aspartic acid residue is present in the 5th position. This particular
cluster therefore represents a set of atoms which are proximal in three-dimensional space but
are not local in amino acid sequence.

Table (3.8) shows that a similar pattern is observed in cluster 426; the only difference being
that an oxygen atom from an aspartic acid residue is found in the 5th position after four atoms
from a lysine residue. In this cluster there is one configuration with a glutamic acid residue in
the 5th position, suggesting that clusters 359 and 426 contain structural motifs which are similar

to one another. Again, this topic is discussed further in Chapter 4.

Table 3.8: Configuration pattern in cluster 426.

Atom number | Element | Amino acid | Residue number | PDB accession number
133 CE LYS 16 104m
134 NZ LYS 16 104m
132 CD LYS 16 104m
131 CG LYS 16 104m
977 OoD2 ASP 122 104m
130 CB LYS 16 104m
975 CG ASP 122 104m
99 NE2 HIS 12 104m
976 OD1 ASP 122 104m
98 CEl HIS 12 104m

3.2.4 Principal coordinate analysis: motif two

Principle coordinate analysis can be applied to both of these sets of configurations to produce
a two-dimensional plot of the first five atoms. Figures (3.9-3.10) shows these PCoA plots for
configurations in cluster 359 and 426, respectively. In both plots, the points in positions 1-4
represent atoms from the same amino acid residue, whereas point 5 represents an oxygen atom
from a different residue which is distant in sequence. The first four atoms in all configurations
form part of a lysine residue. The difference between the two figures is that in figure (3.9) the
atom in the 5th position is from a glutamic acid residue, whereas the corresponding atom in
figure (3.10) is part of an aspartic acid residue. Despite this difference, both of these atoms

appear to be positioned in such a way that when all five atoms of each configuration are joined,
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the shapes of the configurations in both plots are very similar to one another. Figure (3.11)

shows the means shape for both sets of configurations.

3.2.5 Hotelling’s 72 test: motif two

Again a Hotelling’s T test is implemented to test the null hypothesis, Hy: the two mean shapes
are equal. A test statistic of 72 = 72.02 is obtained, with a p-value of 0.3756, suggesting that
there is no evidence to reject the null hypothesis. Therefore, as expected, it is concluded that the

two mean shapes are equal.

Figure 3.9: PCoA of configurations in cluster 359.

3.2.6 Other results

Apart from the results shown so far, none of the remaining clusters appear to show any system-
atic patterns, i.e. there appears to be no obvious relationship between the configurations grouped
in any other cluster not mentioned above, suggesting that the methodology used here is some-
what unsatisfactory. The strengths and limitations of the methodology are discussed in Chapter

4 with the implications of possible future work reviewed in the final chapter.
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Figure 3.10: PCoA of configurations in cluster 426.
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Figure 3.11: PCoA of mean configurations of cluster 359 (black) and cluster 426 (green).
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Chapter 4

Discussion

This project presents a method for identifying structural motifs in protein sequences using ex-
ploratory data analysis techniques. The methodology is unique and is designed to reveal sys-
tematic patterns in atomic configurations using the three-dimensional coordinates of atoms from
protein structures in the PDB. The PDB is a highly regarded repository for experimentally de-

termined protein structures, adding to the credibility of the study.

4.1 Results

4.1.1 Original database

The results from the hierarchical agglomerative clustering of the original database showed that
Ward’s linkage is a more appropriate choice of inter-group proximity measure than complete
linkage, although both measures tend to form reasonably similar clusters here. The choice of
measure is not a fundamental issue and as a result any future work adding to this project should
not completely disregard complete linkage when performing cluster analysis on configurations.
The results of the first cluster analysis show sets of configurations which have been grouped to-
gether due to the positioning of a peptide bond. Recall that a peptide bond constitutes six atoms;
one of which is a hydrogen atom. Since hydrogen atoms are disregarded from the database,
each peptide bond contains five heavy atoms from the database. The initial results show that the
configurations are clustered depending on which of these five atoms is assigned to be the index
atom. This is because each peptide bond is a rigid 6-atom structure, meaning that the distance
between atoms within the bond remain the same in all protein structures (Figure 1.4). Since the
metric used for the cluster analysis depends on these differences in Euclidean distances between
corresponding atoms in different configurations, it is no surprise that the intransigent feature of
the peptide bond is so influential with regards to the clustering solution.

The reason that not all configurations with the same type of index atom element are clustered
together relates to the fact that despite the rigid structure of the peptide bond, these bonds can

rotate by an angle v, about the alpha carbon-carbonyl carbon bond, and an angle ¢, about the
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alpha carbon-nitrogen bond (Figure 4.1)°. Depending on the values of ¢ and ¢, different atoms
will be brought into spatial proximity of the index atom, and as a result, the configurations can
differ from one another. Inevitably, setting the number of atoms in each configuration equal to

five increases the influence of the peptide bond on the clustering solution.

Figure 4.1: Peptide bond with torsion angles - 1) and ¢.

4.1.2 New database

These results are, of course, of little interest, and hence a constraint is required to guarantee
that atomic configurations contain atoms which are proximal in three-dimensional space but
from residues which are distant in linear sequence. The results from hierarchical agglomerative
clustering of the new dataset containing configurations restricted to the constraint, on the other
hand, are much more promising. Moreover, the number of protein structures contained in the
database is increased. This is because the process of discarding ‘uninteresting’ configurations
eases the pressure on computational requirements, therefore allowing a greater volume of data

to be analysed.

4.1.3 Motif one

Again, Ward’s linkage is preferred over complete linkage since the former produces a much
more distinct and regulated clustering solution. One of the most prominent patterns observed
from the clustering solution is the presence of two cysteine residues, which are consistently
far apart in linear sequence, but brought into spatial proximity in three-dimensional space by
the folding of the protein. Two separate clusters both contain this configurational motif, which
essentially represents the presence of disulphide bonds. Branden & Tooze (1999) state that

disulphide bonds can only occur between the sulphur atoms of two cysteine residues. These

®http://employees.csbsju.edu/HIAKUBOWSKI/classes/ch33 1/protstructure/
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cysteine residues are distant in sequence but are brought into spatial proximity by the disulphide
bonds, which help stabilise the structure of the protein (Sevier & Kaiser, 2002). As a conse-
quence of this, disulphide bonds play an important role in the folding and stability of proteins
containing cysteine residues. Although this result is not new to the field of bioinformatics, it
does show that the methodology used here works to a high standard. This suggests that to detect
other more subtle motifs, future work needs to be directed at creating a more astute metric to
describe the dissimilarity between two configurations.

Since not all protein structures contain cysteine residues, only a proportion of structures
contain disulphide bonds. Hence this configurational motif is not present in a large number
of structures. Despite this, the motif is visible in two separate clusters. The reason for this
separation is initially unclear, however the results from principal coordinate analysis and shape

analysis shed some light into the differences between the two sets of configurations.

Hotelling’s 77 test

The mean shapes of both sets of configurations appear to be significantly different from each
other and hence the null hypothesis, Hy: the two mean shapes are equal, is likely to be rejected.
The value of the test statistic is large but is not large enough to reject the null hypothesis. The
fact that Hy is accepted is most likely to have arisen because of the small sample sizes used
in the test. Recall that there are only five configurations in each group, the minimum number
required to be able to construct the test statistic. Clearly, this is a case where although statistical
inference can be carried out in the appropriate tangent space, the sample size is simply too small,
resulting in a test which is not very powerful. Dryden & Mardia (1993) note that this is often
a problem generated by a tangent space which is over-dimensioned and therefore a Hotelling’s
T? test will only be powerful given that there are a large number of observations available.

Dryden & Mardia (1993) also remark that the Hotelling’s T2 test is less powerful than
Goodall’s F' test (Goodall, 1991), when the isotropic normal model holds. Recall that Goodall’s
F test does not estimate the off-diagonal elements of the covariance matrix, whereas Hotelling’s
T? test does. Hence the reason for this loss of power in the Hotelling’s 772 test is explained by
the increase in the number of degrees of freedom used in estimating the covariance matrix.
Despite this, both Hotelling’s 72 test and Goodall’s F test accept the null hypothesis that the
two mean shapes are the same.

An obvious way to overcome the sample size problem is to increase the number of pro-
tein structures in the database. Increasing the number of structures will, of course, increase the
number of configurations used in the cluster analysis. Disulphide bonds from between the thiol
groups of cysteine residues, however not all protein structures contain cysteine residues (Se-
vier & Kaiser, 2002). Recall that methionine residues contain sulphur atoms, but these cannot
form disulphide bonds. This suggests that only by increasing the number of protein structures
containing cysteine residues will the sample size of the configurations in cluster 17 and 99 be

increased. Ideally all structures in the PDB could be used; however, this is not possible here.
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Increasing size of database

By running in four extra structures containing cysteine residues, the number of configurations,
in what was previously known as cluster 17, increases to 9 observations, whereas the number
remains the same in the cluster previously known as cluster 99, i.e. n, = 9 and ny, = 5. The
Hotelling’s T2 test statistic was then shown to be large enough to reject the null hypothesis.
The two mean shapes are therefore significantly different, helping to explain why the configu-
rations are in different clusters, which don’t actually join until the final agglomerations, despite

representing the same type of bond.
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Figure 4.2: Three-dimensional image of a cys-  Figure 4.3: Chemical structure of a cysteine
teine residue. molecule.

Figures (4.2)7-(4.3)® show both the three-dimensional and chemical structure of a cysteine
residue. The large yellow atom is a sulphur atom and the disulphide bond forms between this

and a corresponding sulphur atom in another cysteine residue.

4.1.4 Motif two

The configurational motif discussed above is not the only recurring pattern within the database.
Configurations involving two oppositely charged amino acid residues distant in sequence also
appear in close proximity in three-dimensional space. Recall that aspartic acid and glutamic acid
are negatively charged, whereas lysine and arginine are positively charged. Any combination
of two oppositely charged residues provides a systematic pattern prominent in the clustering
solution. The type of configurational motif observed in these situations is shaped by the presence
of a salt bridge. Recall that a salt bridge is essentially a special type of hydrogen bond, and hence
it is interesting to note that despite hydrogen atoms being disregarded from the database, these

configurational motifs remain identifiable.

"http://www.3dchem.com/imagesofmolecules/Cysteine.jpg
8http://upload.wikimedia.org/wikipedia/commons/5/5e/L-Cysteine.png
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The results from the chi-squared test of independence show that the configurational motifs,
comprising of an aspartic acid residue and either an arginine or lysine residue, appear in two
clusters. There is no evidence, however, to suggest that the main shapes of the two sets of
configurations are significantly different to each other, despite the configurations forming two
reasonably distinct clusters. Perhaps this is due to the small sample size of both groups, or
possibly because the differences are subtle enough to be registered by cluster analysis if the
dendrogram is cut at a low height, as it was here. Again, these motifs are already recognised by
the field of bioinformatics, however, these results reinforce the astuteness of the methodology.

The chi-squared test of independence suggests that a possible configurational motif may
exist which compromises of an aspartic acid and a threonine residue distant in amino acid se-
quence. However, there does not appear to be sufficient evidence to suggest that this observed
pattern is non-random and hence further work must be applied to test for the presence of this
particular motif. It is important to note that although no new discoveries have been made here,
the potential for exploration is huge. Further work relating to how this can achieved is discussed

in Chapter 5.

4.2 Limitations

There are, of course, several limitations to the approaches used in this project. Firstly, the
methodology states that hydrogen atoms should be disregarded from the database because these
atoms are frequently unreported or inaccurately recorded in the PDB. However, hydrogen atoms
account for approximately half of all atoms in protein structures. Therefore, by ignoring such
a large proportion of atoms from the database, a large volume of data is lost. Moreover, there
could be a distinct possibility that hydrogen atoms play a fundamental role in being able to de-
tect configurational motifs in protein structures. This would mean that the inclusion of these
atoms could potentially be crucial in future work. The PDB is notoriously one of the most cred-
ible protein databases available internationally, yet the number of protein structures containing
the atom coordinates of hydrogen atoms is very small. Furthermore, those recorded are often
calculated using imputation and hence carry a large degree of uncertainty. Including hydrogen
atoms as part of the configurations has great potential for future work but obviously this will
depend highly on the availability of such data.

One of the main limitations of this project is the effect of computational requirements on
the size of the database. Due to the large number of protein structures available in the PDB,
there is an enormous volume of data available when considering that each atom from each
structure constitutes one configuration. This project has been constrained to observing only a
small proportion of the total number of known protein structures, clearly restricting the success
of the methodology. The size of the database could easily be increased by a combination of
using additional computational power as well as reducing the number of calculations required

by the programs used here. This could make systematic patterns more accessible.
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It is important to consider the point made earlier that, although increasing, the number of
experimentally determined protein structures is actually very small in comparison to the number
of known protein sequences. This could suggest that the experimentally determined structures,
in general, might not be representative of all protein structures. This point is highlighted by the
fact that the set of solved structures, i.e. those contained in the PDB, might be biased towards
certain types of protein. One possibility is that smaller proteins are easier to solve and hence
there may exist a larger proportion of smaller proteins in the PDB. It was already stated in Chap-
ter 1 that there are fewer membrane proteins than globular proteins in the PDB, since the latter
are, in general, easier to crystallise than the former, resulting in more globular proteins being
determined experimentally by x-ray crystallography techniques. Since configurational motifs
are likely to depend heavily on heavily on the type of protein observed, it is hoped that gener-
alised motifs are available to apply to all protein structures. These structural motifs could then
perhaps be used to decrease the time requirements for experimental determination of structures,
resulting in a dramatic increase in the number of known protein structures. Any recurring pat-
terns then observed could be used to help predict the structure of previously unknown protein

structures.

4.2.1 Potential problems with the methodology

It should be noted that the methodology used in this project forms an elementary approach
to detecting configurational motifs in protein structures. There are many scenarios where the
methodology used becomes unsatisfactory. The next part of this discussion summaries a few of
these scenarios and outlines possible solutions to these problems.

Consider the case where two configurational motifs are considered to be the same, i.e. the
distances between corresponding atoms in each configurations are almost identical, and hence
there is very little difference between the two distance matrices. Now, suppose there is an
atom which happens to be situated somewhere in or around one of the recurring motifs but is
not actually a part of it, i.e. the atom is inferloping. Then the distance matrix will be affected
since this interloping atom is likely to be represented in this distance matrix. If some prior
knowledge is available, stating that this particular atom is close to the configurational motif
purely by chance and is not actually part of the motif, then ideally this atom should be ignored
and as a consequence disregarded from the configuration.

Suppose the configurational motif consists of 8 atoms say, but the interloping atom is lo-
cated next to one of the central atoms within this structural motif. One approach to avoid the
aforementioned problem could be to set m = 9 and then search for a subset of this 9 x 9 matrix.
Obviously the known 8 atom configurational motif will become visible when the interloping
atom is disregarded, suggesting that this particular motif could still be clustered amongst recur-
ring motifs of a similar nature, despite having the interloping atom in the centre of the motif.
It is important to note that all atoms will become the index atom at some point due to the for-

mat of the methodology. Thus the configurational motif will be present providing that only one
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atom, which does not form part of the motif, is in the configuration. Obviously this idea can be
generalised to be in a form that allows any proportion of the m atoms in each configuration to
be disregarded.

Suppose that a configurational motif consists of 8 atoms, say. One might believe that each
time any one of these 8 atoms is chosen to be the index atom, the configuration produced will
represent the motif fully. However, this will not always be true since other atoms, not in the
structural motif, may be closer in three-dimensional space to a proportion of the 8 atoms than
all atoms in the motif. This would result in the distance matrix of the configuration changing
and it would no longer represent the motif.

Now consider the case where two atoms, A1 and A, say, are approximately equidistant from
an atom, As, within a structural motif, but are far apart from one another in three-dimensional
space. Now suppose that one configuration has A; closer than As to A3 but another configu-
ration has A, closer to A3. Since the matrix has a standard ordering of its columns and rows,
the two resulting distance matrices could be very different from each other despite the atoms
forming the same structural motif. This particular scenario suggests that a metric which does

not depend on the ordering of the matrices columns and rows could be a more robust method.
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Chapter 5

Conclusion

5.1 Conclusions

Motivated by the theory that the three-dimensional structure of a protein is completely deter-
mined by it’s amino acid sequence, this project introduces a novel method for detecting con-
figurational motifs in protein structures. The work illustrates the great potential for mapping
sequence to structure using a database approach, constructed by extracting data from the PDB.
The PDB contains the three-dimensional coordinates of heavy atoms from thousands of pro-
tein structures which have been determined experimentally using a technique known as x-ray
crystallography.

The modeling of three-dimensional conformations is a complex issue despite this knowledge
of the link between sequence and structure. This complexity is attributed to the large degree of
structural freedom of residues, combined with complicated interactions, both local and distant
in sequence, between residues. Methods of predicting structure include ad hoc data-based ap-
proaches, which have shown limited success over the past decades, as well as ab initio prediction
methods, which have so far proved elusive.

Currently homologous proteins play a leading role in protein structure prediction. This ap-
proach, however, relies on the availability of a homologous protein, whose structure has been
determined experimentally; a feature which is not always possible. Even if a structure has been
experimentally determined, it does not guarantee an accurate prediction and thus a more general
approach to the problem is required. This approach is shaped by the conjecture that protein
folds are constrained in local sequence-structure space and hence this project identifies config-
urational motifs which are proximal in three-dimensional space but distant in linear sequence.

The database was constructed by extracting 30 different protein structures from the PDB,
chosen at random, with the only requirement being that each structure must have a resolution
< 2A. Statistical exploratory data analysis methods, including cluster analysis and principal
coordinate analysis are applied to the dataset. Statistical shape analysis techniques are also
implemented to test for significant differences in the shapes of any configurational motifs iden-
tified.
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The initial results are masked by the overwhelming influence of the rigid 6-atom structure of
the peptide bond on the clustering solution. The recurring pattern appears to be that each cluster
contains configurations with the same type of index atom from the peptide bond. However, not
all configurations with the same type of index atom are grouped within the same cluster, sug-
gesting that there is some other underlying feature influencing the clustering solution. Peptide
bonds can be rotated by an angle 1, about the alpha carbon-carbonyl carbon bond, and an angle
¢, about the alpha carbon-nitrogen bond. The values of v/ and ¢ have an effect on the configu-
rations. Hence the solution appears to be determined solely by the index atom element and the
degree of rotation of the torsion angles.

The methodology was adapted accordingly and the results from hierarchical agglomerative
clustering of the new dataset are much more promising. Two different systematic patterns are
identified after applying a constraint stating that the residues contained within the configura-
tion must be distant in sequence. Disulphide bonds and salt bridges are accountable for the
configurational motifs identified. Two different clusters contain the disulphide bond motif. Re-
sults from principal coordinate analysis and statistical shape analysis show that the mean shapes
of these two sets of configurations are significantly different from one another, explaining the
reason behind the motif forming two distinct clusters.

Salt bridge motifs, on the other hand, are formed within multiple clusters depending on
which combination of positively charged and negatively charged amino acid residues are con-
tained in the configuration. Interestingly, statistical shape analysis shows that there is no evi-
dence to suggest the mean shapes of these sets of configurations are not equal.

Although these discoveries are familiar to the field of bioinformatics, the results here show
that the methodology functions as intended. Future work is discussed below, reviewing ideas

about how adapting the methodology could lead to more interesting discoveries.

5.2 Future work

There is great potential for future work in the field of protein structure prediction using a data-
based approach such as this one. The methodology used here is elementary and can be adapted
significantly with the aid of additional computing resources. If more computational power was
available, then a greater number of protein structures could be used in the compilation of the
database. This would allow the potential for greater identification of configurational motifs in a
larger number of structures.

If three-dimensional coordinates of hydrogen atoms became easily accessible in the future,
then these atoms could be included in the database. These additional atoms could play a key
role in the detection of motifs.

The metric considered in this project is very basic and is too simplistic for the scenarios
considered in Chapter 4. For example, the case of the interloping atom present in the centre

of a conserved motif, is an extremely plausible scenario in which the methodology becomes
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unsatisfactory. To account for this, a metric which searches for subsets of the original m x m
matrix appears to be an appropriate solution to this particular problem. This would make the
configurations less sensitive to the initial choice of m and would ensure that configurational
motifs would be identifiable in a greater range of configurations. A metric which disregarded
outliers would also have a similar effect on the results.

It is also noted that the standard ordering of the matrices columns and rows has a large impact
on the clustering solution. A metric which does not depend on this ordering will certainly be a
more appropriate tool in some situations, allowing configurational motifs, where two atoms are
roughly equidistant from the index atom, to be grouped together.

Another idea could be to look at the use of hidden Markov models (HMMs) in local sequence-
structure data. Schiitz & Delorenzi (2008) comment that these models could be used for pre-
dicting the occurrence of configurational motifs and could be extremely effective when patterns

consist of motifs which vary in length.
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Appendix A

Supplementary information

A.1 Additional configurations

Table A.1: Configurations in cluster 2.

Atom number | Element | Amino acid | Residue number | PDB accession number
147 N TYR 39 3tpi
145 C GLY 38 3tpi
148 CA TYR 39 3tpi
146 0] GLY 38 3tpi
149 C TYR 39 3tpi
151 CB TYR 39 3tpi
144 CA GLY 38 3tpi
150 (0] TYR 39 3tpi
143 N GLY 38 3tpi
152 CG TYR 39 3tpi
697 N ALA 111 3tpi
693 C SER 110 3tpi
698 CA ALA 111 3tpi
694 o SER 110 3tpi
701 CB ALA 111 3tpi
699 C ALA 111 3tpi
692 CA SER 110 3tpi
700 o ALA 111 3tpi
695 CB SER 110 3tpi
702 N ALA 112 3tpi
959 N ASP 126 laew

Continued on next page
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Table A.1 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
956 C ALA 125 laew
960 CA ASP 126 laew
957 (0] ALA 125 laew
961 C ASP 126 laew
963 CB ASP 126 laew
955 CA ALA 125 laew
933 (0] GLY 121 laew
954 N ALA 125 laew
962 0] ASP 126 laew
385 N SER 50 1351
383 C GLY 49 1351
386 CA SER 50 1351
384 0] GLY 49 1351
387 C SER 50 1351
389 CB SER 50 1351
382 CA GLY 49 1351
388 0] SER 50 1351
381 N GLY 49 1351
390 oG SER 50 1351
684 N THR 89 1351
678 C ILE 88 1351
685 CA THR 89 1351
679 (0] ILE 88 1351
686 C THR 89 1351
688 CB THR 89 1351
677 CA ILE 88 1351
689 0Gl1 THR 89 1351
676 N ILE 88 1351
691 N ALA 90 1351
969 N CYS 127 1351
967 C GLY 126 1351
970 CA CYS 127 1351
968 o GLY 126 1351
971 C CYS 127 1351
973 CB CYS 127 1351
966 CA GLY 126 1351

Continued on next page
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Table A.1 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
972 o CYS 127 1351
965 N GLY 126 1351
974 SG CYS 127 1351
551 N SER 75 la7s
546 C SER 74 la7s
552 CA SER 75 la7s
547 0] SER 74 la7s
553 C SER 75 la7s
555 CB SER 75 la7s
545 CA SER 74 la7s
554 0] SER 75 la7s
544 N SER 74 la7s
556 oG SER 75 la7s
997 N SER 133 la7s
988 C ARG 132 la7s
998 CA SER 133 1a7s
989 0] ARG 132 la7s
1001 CB SER 133 la7s
999 C SER 133 la7s
987 CA ARG 132 la7s

1000 o SER 133 la7s
990 CB ARG 132 la7s
1003 N GLY 134 la7s
707 N LEU 91 1311
703 C SER 90 1311
708 CA LEU 91 1311
704 o SER 90 1311
711 CB LEU 91 1311
709 C LEU 91 1311
702 CA SER 90 1311
710 0] LEU 91 1311
701 N SER 90 1311
712 CG LEU 91 1311
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Table A.2: Configurations in cluster 17.

Atom number | Element | Amino acid | Residue number | PDB accession number
1521 SG CYS 232 3tpi
1520 CB CYS 232 3tpi
811 SG CYS 128 3tpi
1517 CA CYS 232 3tpi
810 CB CYS 128 3tpi
1518 C CYS 232 3tpi
1516 N CYS 232 3tpi
1522 N ASN 233 3tpi
1506 CD LYS 230 3tpi
807 CA CYS 128 3tpi
1932 SG CYS 38 3tpi
1931 CB CYS 38 3tpi
1740 SG CYS 14 3tpi
928 CA CYS 38 3tpi
1739 CB CYS 14 3tpi
1929 C CYS 38 3tpi
1930 o CYS 38 3tpi
1927 N CYS 38 3tpi
1735 N CYS 14 3tpi
608 CD2 LEU 99 3tpi
237 SG CYS 30 1351
236 CB CYS 30 1351
881 SG CYS 115 1351
233 CA CYS 30 1351
880 CB CYS 115 1351
234 C CYS 30 1351
940 NE1 TRP 123 1351
235 o CYS 30 1351
877 CA CYS 115 1351
941 CE2 TRP 123 1351
927 SG CYS 123 la7s
926 CB CYS 123 la7s
1355 SG CYS 181 la7s
923 CA CYS 123 la7s
1354 CB CYS 181 la7s

Continued on next page
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Table A.2 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
922 N CYS 123 la7s
913 C ARG 122 la7s
914 (0] ARG 122 la7s
1122 CG2 VAL 148 la7s
1351 CA CYS 181 la7s
1355 SG CYS 181 la7s
1354 CB CYS 181 la7s
927 SG CYS 123 la7s
1351 CA CYS 181 la7s
926 CB CYS 123 la7s
1350 N CYS 181 la7s
1345 C VAL 180 la7s
1346 o VAL 180 la7s
1340 CG LEU 179 la7s
1342 CD2 LEU 179 la7s
240 SG CYS 30 1b2k
239 CB CYS 30 1b2k
894 SG CYS 115 1b2k
236 CA CYS 30 1b2k
893 CB CYS 115 1b2k
952 NE1 TRP 123 1b2k
237 C CYS 30 1b2k
238 0O CYS 30 1b2k
890 CA CYS 115 1b2k
269 CE2 PHE 34 1b2k
1245 SG CYS 30 1b2k
1244 CB CYS 30 1b2k
1903 SG CYS 115 1b2k
241 CA CYS 30 1b2k
1902 CB CYS 115 1b2k
1242 C CYS 30 1b2k
1961 NE1 TRP 123 1b2k
1243 o CYS 30 1b2k
1278 CE2 PHE 34 1b2k
1899 CA CYS 115 1b2k
240 SG CYS 30 1941

Continued on next page
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Table A.2 — continued from previous page

Atom number | Element | Amino acid | Residue number | PDB accession number
239 CB CYS 30 1941
896 SG CYS 115 1941
236 CA CYS 30 1941
895 CB CYS 115 1941
237 C CYS 30 1941
954 NEI1 TRP 123 1941
238 o CYS 30 1941
892 CA CYS 115 1941
269 CE2 PHE 34 1941
349 SG CYS 45 4pep
348 CB CYS 45 4pep
380 SG CYS 50 4pep
345 CA CYS 45 4pep
379 CB CYS 50 4pep
346 C CYS 45 4pep
788 (0] GLU 105 4pep
350 N SER 46 4pep
356 N SER 47 4pep
361 oG SER 47 4pep
965 SG CYS 388 3b8z

64 CB CYS 388 3b8z
1591 SG CYS 471 3b8z
961 CA CYS 388 3b8z
1590 CB CYS 471 3b8z
1586 N CYS 471 3b8z
960 N CYS 388 3b8z
1567 o HIS 468 3b8z
1587 CA CYS 471 3b8z
1575 CA GLY 469 3b8z
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A.2 R functions

A.2.1 Function 1

protein=function(m,w, t) {

mat=matrix (wSxyz,t,byrow = T)

mx=seq(l, 3*t, by = 3)
my=seq (2, 3*t, by = 3)
mz=seq (3, 3*t, by = 3)

col=wS$xyz[mx]
co2=wSxyz [my]

co3=wS$xyz[mz]

g=array (0, c(m,m,t))

for(a in 1:t){

d=t (matrix (rep(0,t*3),3,byrow=T))
for(i in 1:t){

for(j in 1:3){
dl[i,jl=mat[i,jl-mat[a, J]

}}

e=rep (0, t)

for(k in 1:t) {
el[k]=sqrt(dlk, 1] 2+d[k,2]"2+d[k,3]"2)
}

y=sort (e)

zz=t (matrix (rep (0, m*3), 3, byrow=T))

for(l in 1:t){

for(n in 1l:m) {
if(y[n]l==e[l]){zz[n,1]=(col[l])}&{zz[n,2]=(co2[1l])}&{zz[n,3]=(co3[1])}
}}

gl,,al=matrix(dist.xyz( zz[l:m,], zz[l:m,]),nrow=m)
}

return (g)

}
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A.2.2 Function 2

protein2=function (m,w,t) {

mat=matrix (w$xyz,t,byrow = T)
mx=seq(l, 3*t, by = 3)
my=seq (2, 3*t, by = 3)

mz=seq (3, 3*t, by = 3)
col=wSxyz [mx]
co2=wS$xyz[my]

co3=wSxyz[mz]

F=t (matrix(rep (0, t*m),m, byrow=T))
for(a in 1:t){

d=t (matrix (rep(0,t*3),3,byrow=T))
for(i in 1:t){

for(j in 1:3){

dli, jl=mat[i, j]l-mat[a, j]

}}

e=rep (0, t)

for(k in 1:t) {

el[k]=sqgrt (dl[k, 1] 2+d[k,2] " 2+d[k,3]"2)
}

y=sort (e)

for(l in 1:t){

for(n in 1l:m) {
if(y[n]l==e[l]){F[a,n]=1}
}}

}

return (F)

}
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